Skip to main content
Log in

A mesoscopic model for (de)wetting

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a mesoscopic model for simulating the dynamics of a non-volatile liquid on a solid substrate. The wetting properties of the solid can be tuned from complete wetting to total non-wetting. This model opens the way to study the dynamics of drops and liquid thin films at mesoscopic length scales of the order of the nanometer. As particular applications, we analyze the kinetics of spreading of a liquid drop wetting a solid substrate and the dewetting of a liquid film on a hydrophobic substrate. In all these cases, very good agreement is found between simulations and theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillary and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003).

  2. A. Oron, H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997).

    Article  ADS  Google Scholar 

  3. A. Milchev, A. Milchev, K. Binder, Comput. Phys. Commun. 146, 38 (2002).

    Article  MATH  ADS  Google Scholar 

  4. J. Koplik, J.R. Banavar, Phys. Rev. Lett. 84, 19 (2000).

    Article  Google Scholar 

  5. J. Leopoldes, A. Dupuis, D. Bucknall, J.M. Yeomans, Langmuir 19, 9818 (2003).

    Article  Google Scholar 

  6. B. Davidovitch, E. Moro, H.A. Stone, Phys. Rev. Lett. 95, 244505 (2005).

    Article  ADS  Google Scholar 

  7. K. Mecke, M. Rauscher, J. Phys. Condens. Matter 17, S3515 (2005)

  8. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 11 (1997).

    Article  Google Scholar 

  9. C.P. Lowe, Europhys. Lett. 47, 145 (1999).

    Article  ADS  Google Scholar 

  10. P. Español, M. Revenga, Phys. Rev. E 67, 026705 (2003).

    Article  ADS  Google Scholar 

  11. A.A. Louis, J. Phys. Condens. Matter 14, 9187 (2002).

    Article  ADS  Google Scholar 

  12. I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 115, 5015 (2001).

    Article  ADS  Google Scholar 

  13. Even if the $u_{\ab{ex}}$ is not pair-wise additive, it is still possible to express particle interactions in terms of pair-wise forces $\mathbf{F}_{ij}^{\ab{C}}=-(u'_{\ab{ex}}(n_i)+u'_{\ab{ex}}(n_j)) w'_{\rho}(r_{ij}) \mathbf{e}_{ij}$. These forces depend on the positions of all neighbouring particles. Hence, they neither derive from a pair-wise additive potential as in standard DPD nor reduce to global density-dependent forces.

  14. In the simulations the local density is built using the weight function $w_{\rho}(r)=\frac{315}{64 \pi}(1-r/r_{\ab{c}})^{3/2}$ if $r < r_{\ab{c}}$ and zero otherwise. Such a choice is made to favor a smoother local structure (S. Merabia, I. Pagonabarraga, in preparation) and differs from the standard quadratic weight function appearing in the DPD friction force.

  15. Density oscillations at liquid/vapor interfaces have been reported in a variety of fluid models, and are attributed usually to the presence of a Fisher-Widom line (see, e.g., P. Tarazona, E. Chacon, M. Reinaldo-Falagan, E. Velasco, J. Chem. Phys. 117, 3941 (2002)).

    Article  Google Scholar 

  16. S.Y. Trofimov, E.L.F. Nies, M.A.J. Michels, J. Chem. Phys. 117, 9383 (2002).

    Article  ADS  Google Scholar 

  17. P.B. Warren, Phys. Rev. E 68, 066702 (2003).

    Article  ADS  Google Scholar 

  18. M. Revenga, I. Zuñiga, P. Español, I. Pagonabarraga, Int. J. Mod. Phys. C 9, 1319 (1998).

    Article  ADS  Google Scholar 

  19. For simplicity, we use in this work $w_{\ab{c}}(r)=(1-r/r_{\ab{c}})^{1/2}$ for $r<r_{\ab{c}}$ ($w_{\ab{c}}(r)=0$ otherwise).

  20. W.H. Press, B.P. Flannery, S.A. Teukolsky, Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 1992).

  21. If we assume that the line tension can be approximated as the surface tension associated to the interfacial width (see, e.g., S. Auer, D. Frenkel, Phys. Rev. Lett. 91, 015703 (2003)), the line and surface tensions contributions to the free energy become comparable when the area of the contact line is of the order of the contact area, consistent with simulation results.

    Article  Google Scholar 

  22. L.H. Tanner, J. Phys. D 12, 1473 (1979).

    Article  ADS  Google Scholar 

  23. Other forms of the fluid/wall net interaction (such as a density-dependent force) may lead to non-monotonous interfacial free energies and to the existence of a thin-film layer in coexistence with the drop.

  24. F. Brochard-Wyart, J.M. di Meglio, D. Quéré, C. R. Acad. Sci. (Paris) 304, 553 (1987).

    Google Scholar 

  25. A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Merabia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabia, S., Pagonabarraga, I. A mesoscopic model for (de)wetting. Eur. Phys. J. E 20, 209–214 (2006). https://doi.org/10.1140/epje/i2005-10128-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10128-1

PACS.

Navigation