Skip to main content
Log in

Frustration between syn- and anticlinicity in mixtures of chiral and non-chiral tilted smectic-C-type liquid crystals

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the effects of mixing ferroelectric and antiferroelectric liquid-crystal compounds (FLCs and AFLCs) when the former are strictly synclinic and the latter strictly anticlinic, i.e. one mixture component exhibits only SmC* and the other only SmC a* as tilted phase. Three different paths between syn- and anticlinicity were detected: transition directly between SmC* and SmC a*, transition via the SmCβ* and SmCγ* subphases, or by “escaping” the clinicity frustration by reducing the tilt to zero, i.e. the SmA* phase is extended downwards in temperature, separating SmC* from SmC a* in the phase diagram. The most common path is the one via the subphases, demonstrating that these phases appear as a result of frustration between syn- and anticlinic and, consequently, between syn- and antipolar order. For assessing the role of chirality, we also replaced the FLC with non-chiral synclinics. With one of the AFLCs, the route via supbhases was detected even in this case, suggesting that chirality --although necessary-- does not have quite the importance that has previously been attributed to the appearance of the subphases. The path chosen in the mixture study seemed to be determined mainly by the synclinic component, the subphase induction occurring only when the SmA*-SmC* transition was second order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999).

  2. J.P.F. Lagerwall, F. Giesselmann, A. Saipa, R. Dabrowski, Liq. Cryst. 31, 1175 (2004).

    Article  Google Scholar 

  3. M. Hamaneh, P. Taylor, Phys. Rev. Lett. 93, 167801 (2004).

    Article  PubMed  Google Scholar 

  4. A. Emelyanenko, M. Osipov, Phys. Rev. E 68, 051703 (2003).

    Article  Google Scholar 

  5. M. Cepic, B. Zeks, Phys. Rev. Lett. 87, 085501 (2001).

    Article  PubMed  Google Scholar 

  6. A. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 2 28, L1261 (1989).

  7. J.P.F. Lagerwall, P. Rudquist, S.T. Lagerwall, F. Giesselmann, Liq. Cryst. 30, 399 (2003).

    Article  Google Scholar 

  8. R. Dabrowski, Ferroelectrics 243, 1 (2000).

    Google Scholar 

  9. J. Gasowska, R. Dabrowski, W. Drzewinski, M. Filipowicz, J. Przedmojski, K. Kenig, Ferroelectrics 309, 83 (2004).

    Article  Google Scholar 

  10. T. Isozaki, T. Fujikawa, H. Takezoe, A. Fukuda, T. Hagiwara, Y. Suzuki, I. Kawamura, Jpn. J. Appl. Phys. 2 31, L1435 (1992).

  11. T. Akizuki, K. Miyachi, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 1 38, 4832 (1999).

    Article  Google Scholar 

  12. M. Osipov, A. Fukuda, H. Hakoi, Mol. Cryst. Liq. Cryst. 402, 245 (2003).

    Google Scholar 

  13. P.M. Johnson, D.A. Olson, S. Pankratz, H.T. Nguyen, J.W. Goodby, M. Hird, C.C. Huang, Phys. Rev. Lett. 84, 4870 (2000).

    Article  PubMed  Google Scholar 

  14. P. Mach, R. Pindak, A.M. Levelut, P. Barois, H.T. Nguyen, C.C. Huang, L. Furenlid, Phys. Rev. Lett. 81, 1015 (1998).

    Article  Google Scholar 

  15. A. Cady, J.A. Pitney, R. Pindak, L.S. Matkin, S.J. Watson, H.F. Gleeson, P. Cluzeau, P. Barois, A.M. Levelut, W. Caliebe, J. Goodby, M. Hird, C.C. Huang, Phys. Rev. E 64, 050702 (2001).

    Article  Google Scholar 

  16. E. Gorecka, D. Pociecha, M. Cepic, B. Zeks, R. Dabrowski, Phys. Rev. E 65, 061703 (2002).

    Article  Google Scholar 

  17. M. Cepic, E. Gorecka, D. Pociecha, B. Zeks, H. Nguyen, J. Chem. Phys. 117, 1817 (2002).

    Article  Google Scholar 

  18. J.P.F. Lagerwall, F. Giesselmann, C. Selbmann, S. Rauch, G. Heppke, J. Chem. Phys. 122, 144906 (2005).

    Article  PubMed  Google Scholar 

  19. T. Isozaki, T. Fujikawa, H. Takezoe, A. Fukuda, T. Hagiwara, Y. Suzuki, I. Kawamura, Phys. Rev. B 48, 13439 (1993).

    Article  Google Scholar 

  20. A. Fukuda, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe, J. Mater. Chem. 4, 997 (1994).

    Article  Google Scholar 

  21. S.-S. Seomun, T. Gouda, Y. Takanishi, K. Ishikawa, H. Takezoe, Liq. Cryst. 26, 151 (1999).

    Article  Google Scholar 

  22. E. Gorecka, D. Pociecha, M. Glogarova, J. Mieczkowski, Phys. Rev. Lett. 81, 2946 (1998).

    Article  Google Scholar 

  23. D. Pociecha, M. Glogarova, E. Gorecka, J. Mieczkowski, Phys. Rev. E 61, 6674 (2000).

    Article  Google Scholar 

  24. F. Giesselmann, A. Langhoff, P. Zugenmaier, Liq. Cryst. 23, 927 (1997).

    Article  Google Scholar 

  25. K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, Jpn. J. Appl. Phys. 2 22, L661 (1983).

  26. J.P.F. Lagerwall, F. Giesselmann, E. Körblova, D.M. Walba, J.M. Oton, D. Coleman, R. Shao, N.A. Clark, The peculiar optic, dielectric and x-ray diffraction properties of a fluorinated de vries asymmetric-diffuse-cone-model ferroelectric liquid crystal, to be published in Liq. Cryst. (2005).

  27. A. de Vries, J. Chem. Phys. 71, 25 (1979).

    Article  Google Scholar 

  28. A. de Vries, Mol. Cryst. Liq. Cryst. Lett. 49, 179 (1979).

    Google Scholar 

  29. A. de Vries, A. Ekachai, N. Spielberg, Mol. Cryst. Liq. Cryst. Lett. 49, 143 (1979).

    Google Scholar 

  30. J. Schacht, H. Baethge, F. Giesselmann, P. Zugenmaier, J. Mater. Chem. 8, 603 (1998).

    Google Scholar 

  31. S. Dumrongrattana, C.C. Huang, G. Nounesis, S.C. Lien, J.M. Viner, Phys. Rev. A 34, 5010 (1986).

    Article  PubMed  Google Scholar 

  32. H. Keymeulen, W. de Jeu, J. Slattery, M. Veum, Eur. Phys. J. E 9, 443 (2002).

    Article  PubMed  Google Scholar 

  33. T. Nakai, S. Miyajima, Y. Takanishi, S. Yoshida, A. Fukuda, J. Phys. Chem. B 103, 406 (1999).

    Article  Google Scholar 

  34. T. Matsumoto, A. Fukuda, M. Johno, Y. Motoyama, T. Yui, S.S. Seomun, M. Yamashita, J. Mater. Chem. 9, 2051 (1999).

    Article  Google Scholar 

  35. D.M. Walba, Ferroelectric liquid crystal conglomerates, in Topics in Stereochemistry, Materials-Chirality, Vol. 24, edited by M.M. Green, R.J.M. Nolte, E.W. Meijer, S.E. Denmark (Wiley-VCH, 2003) pp. 457-518.

  36. J.P.F. Lagerwall, F. Giesselmann, M.A. Osipov, On the change in helix handedness at transitions between the sm-c* and sm-ca* phases in chiral smectic liquid crystals, to be published in Liq. Cryst. (2005).

  37. I. Musevic, M. Skarabot, G. Heppke, H.T. Nguyen, Liq. Cryst. 29, 1565 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. F. Lagerwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagerwall, J.P.F., Heppke, G. & Giesselmann, F. Frustration between syn- and anticlinicity in mixtures of chiral and non-chiral tilted smectic-C-type liquid crystals. Eur. Phys. J. E 18, 113–121 (2005). https://doi.org/10.1140/epje/i2005-10035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10035-5

PACS.

Navigation