Skip to main content
Log in

Molecular dynamics study of tethered polymers in shear flow

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Single macromolecules can now be isolated and characterized experimentally using techniques such as optical tweezers and videomicroscopy. An interesting and important single-molecule problem is that of the dynamics of a polymer chain tethered to a solid surface and subjected to a shear flow. An experimental study of such a system was reported by Doyle et al. (Phys. Rev. Lett. 84, 4769 (2000)), and their results showed a surprising recirculating motion of the DNA chain. We explore this problem using molecular dynamics computer simulations with explicit hydrodynamic interactions. The dynamical properties of a Freely Jointed Chain (FJC) with Finitely Extensible Nonlinear Elastic (FENE) links are examined in similar conditions (i.e., confined between two surfaces and in the presence of a Poiseuille flow). We see the remarkable cyclic polymer motion observed experimentally, and we show that a simple cross-correlation function can be used to measure the corresponding period of motion. We also propose a new empirical equation relating the magnitude of the shear flow to the amount of chain deformation, an equation that appears to apply for both weak and strong flows. Finally, we report on packing effects near the molecularly flat wall, an associated chain-sticking phenomenon, and the impact of the chain hydrodynamic drag on the local fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Doyle, B. Ladoux, J.L. Viovy, Phys. Rev. Lett. 84, 4769 (2000).

    Article  PubMed  Google Scholar 

  2. J. Klein, Y. Kamiyama, H. Yoshizawa, J.N. Israelachvili, G.H. Fredrickson, P. Pincus, L.J. Fetters, Macromolecules 26, 5552 (1993).

    Article  Google Scholar 

  3. P. Righetti, W. Hancock (Editors), Capillary Electrophoresis in Analytic Biotechnology (CRC Press, New York, 1996).

  4. B. Ladoux, P.S. Doyle, Europhys. Lett. 52, 511 (2000).

    Article  Google Scholar 

  5. J.W. Hatfield, S.R. Quake, Phys. Rev. Lett. 82, 3548 (1999).

    Article  Google Scholar 

  6. I. Teraoka, Polymer Solutions: An Introduction to Physical Properties (John Wiley & Sons, New York, 2002).

  7. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995).

    Article  Google Scholar 

  8. A. Rahman, Phys. Rev. 136, 405 (1964).

    Article  Google Scholar 

  9. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  Google Scholar 

  10. R.C. Armstrong, J. Chem. Phys. 60, 724 (1974).

    Article  Google Scholar 

  11. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986).

    Article  PubMed  Google Scholar 

  12. J. Koplik, J.R. Banavar, J.F. Willemsen, Phys. Rev. Lett. 60, 1282 (1988).

    Article  PubMed  Google Scholar 

  13. J.L. Barrat, L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).

    Article  Google Scholar 

  14. M. Cieplak, J. Koplik, J.R. Banavar, Phys. Rev. Lett. 86, 803 (2001).

    Article  PubMed  Google Scholar 

  15. C. Neto, V.S.J. Craig, D.R.M. Williams, Eur. Phys. J. E 12, S71 (2003).

  16. P.A. Thompson, S.M. Troian, Nature 389, 360 (1997).

    Google Scholar 

  17. J. Gao, J.H. Weiner, Macromolecules 29, 6048 (1996).

    Article  Google Scholar 

  18. S. Barsky, G.W. Slater, Macromolecules 32, 6348 (1999).

    Article  Google Scholar 

  19. M. Kenward, G.W. Slater, Eur. Phys. J. E 14, 55 (2004).

    Article  PubMed  Google Scholar 

  20. S. Barsky, R. Delgado-Buscalioni, P.V. Coveney, J. Chem. Phys. 121, 2403 (2004).

    Article  PubMed  Google Scholar 

  21. S. Yang, J.B. Witkoskie, J. Cao, Chem. Phys. Lett. 377, 399 (2003).

    Article  Google Scholar 

  22. S. Guillouzic, G.W. Slater, submitted for publication (2005).

  23. M. Rubinstein, Polymer Physics (Oxford University Press, 2003).

  24. F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).

    Google Scholar 

  25. S. Liu, B. Ashok, M. Muthukumar, Polymer 45, 1383 (2004).

    Article  Google Scholar 

  26. C.M. Schroeder, R.E. Teixeira, E.S.G. Shaqfeh, S. Chu, Macromolecules 38, 1967 (2005).

    Article  Google Scholar 

  27. S. Iarlori, P. Carnevali, F. Ercolessi, E. Tosatti, Surf. Sci. 211/212, 55 (1989).

    Google Scholar 

  28. G. Drazer, J. Koplik, A. Acrivos, Phys. Rev. Lett. 89, 244501 (2002).

    Article  PubMed  Google Scholar 

  29. S. Manneville, P. Cluzel, J.L. Viovy, D. Chatenay, F. Caron, Europhys. Lett. 36, 413 (1996).

    Article  Google Scholar 

  30. Y.J. Sheng, P.Y. Lai, H.K. Tsao, Phys. Rev. E 56, 1900 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gratton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratton, Y., Slater, G.W. Molecular dynamics study of tethered polymers in shear flow. Eur. Phys. J. E 17, 455–465 (2005). https://doi.org/10.1140/epje/i2005-10020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10020-0

PACS.

Navigation