Skip to main content
Log in

Some remarks on the rheology of dense granular flows

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The paper reviews some peculiar properties exhibited by granular flows. We emphasize the inability of kinetic theory and of Bagnold’s heuristic approach to describe the rapid regime of densely packed flows, characterized by the breakdown of the binary collision picture and by multibody long-lasting contacts. We suggest that deformation waves through the continuous paths of contacts can be effective to transport momentum and energy through the bulk, in a time very short compared to the inverse of the shear rate. This mechanism could explain some key rheological features encountered in dense granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GDR MiDi, this issue, p. \(\bullet\).

  2. For recent reviews, see J.T. Jenkins in Physics of Dry Granular Media, edited by H.H. Herrmann, J.P. Hovi, S. Luding (Kluwer, Dordrecht, 1998) p. 353; I. Goldhirsch, ibid. p. 371; J. Rajchenbach, Adv. Phys. 49, 229 (2000).

    Article  Google Scholar 

  3. H.H. Shen, M. Babic, Mechanics of Granular Materials, edited by M. Oda, K. Iwashita (Balkema, Rotterdam, 1999) Chapt. 5.

  4. C. Coste, B. Gilles, Eur. Phys. J. B 7, 155 (1999).

    Article  Google Scholar 

  5. J. Rajchenbach, E. Clément, J. Duran, Experiments in model granular media: a study of gravity flows, in Fractal Aspects of Materials, edited by F. Family, P. Meakin, B. Sapoval, R. Wool, Vol. 367 (M.R.S. Symposium, Pittsburgh, 1995) p. 528.

  6. S. Dippel, Microscopic dynamics of granular materials, PhD Thesis, Höchstleistungsrechenzentrum, Forschungszentrum Jülich (1998).

  7. A.J.C. de Barré de Saint-Venant, C. R. Acad. Sci. Paris 31, 283 (1850).

    Google Scholar 

  8. Nevertheless, this approximation becomes correct for slope angles close to the angle of repose, for which the part of the losses related to inelasticity and wave damping are negligible compared to that originating in frictional sliding.

  9. W. Goldsmith, Impact (Edward Arnold, London, 1960).

  10. L. Labous, A.D. Rosato, R. Dave, Phys. Rev. E 56, 5717 (1997).

    Article  Google Scholar 

  11. A.P. Ivanov, J. Appl. Math. Mech. 61, 342 (1997).

    Article  Google Scholar 

  12. E. Falcon, C. Laroche, S. Fauve, C. Coste, Eur. Phys. J. B 5, 111 (1998).

    Article  Google Scholar 

  13. R.A. Bagnold, Proc. R. Soc. London, Ser. A 255, 49 (1954).

    Google Scholar 

  14. O. Pouliquen, Phys. Fluids 11, 542 (1999).

    Article  Google Scholar 

  15. J. Rajchenbach, Phys. Rev. Lett. 90, 144302 (2003).

    Article  Google Scholar 

  16. M. Nagakawa, S.A. Altobelli, A. Caprihan, E. Fukushima, E.K. Jeong, Exp. Fluids 16, 54 (1993).

    Google Scholar 

  17. I. Vardoulakis, J. Sulem, Bifurcation Analysis in Geomechanics (Chapman and Hall, London, 1995).

  18. J.J. Moreau, Numerical investigation of shear zones in granular materials, in Proceedings of the HLRZ-Workshop on friction, Arching, Contact Dynamics, edited by P. Grassberger, D.E. Wolf (World Scientific, Singapore, 1997) p. 233.

  19. J.P. Bardet, J. Proubet, Géotechnique 41, 599 (1991).

    Google Scholar 

  20. J.K. Morgan, M.S. Boettcher, J. Geophys. Res. B 104, 2703 (1999).

    Article  Google Scholar 

  21. C. Thornton, L. Zhang, in Powders and Grains 2000, edited by Y. Kishino (Swets and Zeitliger, Lisse, The Netherlands, 2001) p. 183.

  22. M. Lätzel, S. Luding, H.J. Herrmann, D.W. Howell, R.P. Behringer, Eur. Phys. J. E 11, 325 (2003).

    Google Scholar 

  23. O.R. Walton, R.L. Braun, Acta Mech. 63, 73 (1986).

    Google Scholar 

  24. J.T. Jenkins, M.W. Richman, J. Fluid. Mech. 192, 313 (1988).

    MATH  Google Scholar 

  25. J. Christoffersen, M. Mehrabadi, C. Nemat-Nasser, J. Appl. Mech. 48, 339 (1981).

    MATH  Google Scholar 

  26. J.D. Goddard, Continuum modeling of granular assemblies, in Physics of Dry Granular Media, edited by H. Herrmann, J.P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 1.

  27. Note that the forces involved during the impact phenomenon do not obey the scaling \({\bf f}_{ij}\rightarrow \alpha {\bf f}_{ij},\; t \rightarrow t/\sqrt{\alpha}\), owing to the nonlinear nature of the Hertzian contact. The homothetic transformation of the shear rate as \(\dot{\gamma} \rightarrow \sqrt{\alpha} \dot{\gamma}\) leads to a transformation of the impact duration as \(\tau \rightarrow \alpha^{-1/10} \tau\); see L.D. Landau, E.M. Lifschitz, Theory of Elasticity (Pergamon, New York, 1986).

  28. D.V. Orpe, A.V. Khakhar, Phys. Rev. E 64, 031202 (2001).

    Article  Google Scholar 

  29. E. Azanza, Ecoulements granulaires bidimensionnels sur un plan incliné, Thesis Dissertation, Ecole Nationale des Ponts et Chaussée (Noisy le Grand, France, 1998).

  30. S.B. Savage, C.K.K. Lun, J. Fluid. Mech. 189, 311 (1988)

    Google Scholar 

  31. E. Azanza, F. Chevoir, P. Moucheront, J. Fluid Mech. 400, 199 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 25 June 2004, Published online: 31 August 2004

PACS:

45.70.-n Granular systems

J. Rajchenbach: On leave from LMDH (CNRS-UMR 7603), Université P. et M. Curie, 75005 Paris, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajchenbach, J. Some remarks on the rheology of dense granular flows. Eur. Phys. J. E 14, 367–371 (2004). https://doi.org/10.1140/epje/i2004-10025-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10025-1

Keywords

Navigation