Skip to main content
Log in

Variational theory for a single polyelectrolyte chain revisited

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We reconsider the electrostatic contribution to the persistence length, \(\ell_{\rm e}\), of a single, infinitely long-charged polymer in the presence of screening. A Gaussian variational method is employed, taking \(\ell_{\rm e}\) as the only variational parameter. For weakly charged and flexible chains, crumpling occurs at small length scales because conformational fluctuations overcome electrostatic repulsion. The electrostatic persistence length depends on the square of the screening length, \(\ell_{\rm e}\sim\kappa^{-2}\), as first argued by Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to a string of crumpled blobs. We compare our approach to previous theoretical works (including variational formulations) and show that the result \(\ell_{\rm e}\sim\kappa^{-1}\) found by several authors comes from the improper use of a cutoff at small length scales. For highly charged and stiff chains, crumpling does not occur; here we recover the OSF result and validate the perturbative calculation for slightly bent rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Förster, M. Schmidt, Adv. Polym. Sci. 120, 51 (1995).

    Google Scholar 

  2. J.-L. Barrat, J.-F. Joanny, Adv. Chem. Phys. 94, 1 (1996).

    Google Scholar 

  3. R.R. Netz, D. Andelman, Phys. Rep. 380, 1 (2003).

    Article  Google Scholar 

  4. R. Golestanian, M. Kardar, T.B. Liverpool, Phys. Rev. Lett. 82, 4456 (1999).

    Article  Google Scholar 

  5. T.T. Nguyen, I. Rouzina, B.I. Shklovskii, Phys. Rev. E 60, 7032 (1999).

    Article  Google Scholar 

  6. G. Ariel, D. Andelman, Europhys. Lett. 61, 67 (2003).

    Article  Google Scholar 

  7. U. Micka, K. Kremer, Phys. Rev. E 54, 2653 (1996).

    Article  Google Scholar 

  8. M.J. Stevens, S.J. Plimpton, Eur. Phys. J. B 2 341 (1998).

    Google Scholar 

  9. R. Everaers, A. Milchev, V. Yamakov, Eur. Phys. J. E 8, 3 (2002).

    Article  Google Scholar 

  10. T.T. Nguyen, B.I. Shklovskii, Phys. Rev. E 66, 021801 (2002).

    Article  Google Scholar 

  11. M. Ullner, C.E. Woodward, Macromolecules 35, 1437 (2002).

    Article  Google Scholar 

  12. M. Schmidt, Macromolecules 24, 5361 (1991).

    Google Scholar 

  13. J.-L. Barrat, J.-F. Joanny, Europhys. Lett. 24, 333 (1993).

    Google Scholar 

  14. D. Bratko, K.A. Dawson, J. Chem. Phys. 99, 5352 (1993).

    Article  Google Scholar 

  15. H. Li, T.A. Witten, Macromolecules 28, 5921 (1995).

    Google Scholar 

  16. B.-Y. Ha, D. Thirumalai, Macromolecules 28, 577 (1995).

    Google Scholar 

  17. R.R. Netz, H. Orland, Eur. Phys. J. B 8, 81 (1999).

    Article  Google Scholar 

  18. B.-Y. Ha, D. Thirumalai, J. Chem. Phys. 110, 7533 (1999).

    Article  Google Scholar 

  19. A.R. Khokhlov, K.A. Khachaturian, Polymer 23, 1742 (1982).

    Article  Google Scholar 

  20. T. Odijk, J. Polym. Sci. 15, 477 (1977).

    Article  Google Scholar 

  21. J. Skolnick, M. Fixman, Macromolecules 10, 944 (1977).

    Google Scholar 

  22. P.-G. de Gennes, P. Pincus, R.M. Velasco, F. Brochard, J. Phys. (Paris) 37, 1461 (1976).

    Google Scholar 

  23. P. Pfeuty, J. Phys. (Paris) 39, C2-149 (1978).

    Google Scholar 

  24. T.B. Liverpool, M. Stapper, Eur. Phys. J. E 5, 359 (2001).

    Article  Google Scholar 

  25. P.L. Hansen, R. Podgornik, J. Chem. Phys. 114, 8637 (2001).

    Article  Google Scholar 

  26. S.F. Edwards, P. Singh, J. Chem. Soc. Faraday Trans. II 75, 1001 (1979).

    Article  Google Scholar 

  27. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford 1986).

  28. B. Jönsson, C. Peterson, B. Söderberg, J. Phys. Chem. 99, 1251 (1995).

    Google Scholar 

  29. M. Muthukumar, J. Chem. Phys. 105, 5183 (1996).

    Article  Google Scholar 

  30. K. Ghosh, G.A. Carri, M. Muthukumar, J. Chem. Phys. 115, 4367 (2001).

    Article  Google Scholar 

  31. A. Yethiraj, J. Chem. Phys. 108, 1184 (1998).

    Article  Google Scholar 

  32. J.P. Donley, J. Rudnick, A.J. Liu, Macromolecules 30, 1188 (1997).

    Article  Google Scholar 

  33. J.P. Donley, J. Chem. Phys. 116, 5315 (2002).

    Article  Google Scholar 

  34. T. Hofmann, R.G. Winkler, P. Reineker, J. Chem. Phys. 118, 6624 (2003).

    Article  Google Scholar 

  35. J.B. Lagowski, J. Noolandi, B. Nickel, J. Chem. Phys. 95, 1266 (1991).

    Article  Google Scholar 

  36. J. des Cloiseaux, J. Jannink, Les Polyméres en Solution: leur Modélisation et leur Structure (Les Editions de Physique, Paris, 1987).

  37. W.F. Reed, S. Ghosh, G. Medjahdi, J. François, Macromolecules 24, 6189 (1991).

    Google Scholar 

  38. G.S. Manning, J. Chem. Phys. 51, 924 (1969).

    Article  Google Scholar 

  39. R.R. Netz, H. Orland, Eur. Phys. J. E 11, 301 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manghi.

Additional information

PACS:

36.20.-r Macromolecules and polymer molecules - 82.70.-y Disperse systems; complex fluids - 87.15.-v Biomolecules: structure and physical properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manghi, M., Netz, R.R. Variational theory for a single polyelectrolyte chain revisited. Eur. Phys. J. E 14, 67–77 (2004). https://doi.org/10.1140/epje/i2004-10007-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10007-3

Keywords

Navigation