Skip to main content
Log in

Multiple stalk formation as a pathway of defect-induced membrane fusion

  • Rapid Note
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We propose that the first stage of membrane fusion need not be the formation of a single stalk. Instead, we consider a scenario for defect-induced membrane fusion that proceeds cooperatively via multiple stalk formation. The defects (stalks or pores) attract each other via membrane-mediated capillary interactions that result in a condensation transition of the defects. The resulting dense phase of stalks corresponds to the so-called fusion intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.R. Lentz, V. Malinin, M.E. Haque, K. Evans, Curr. Opin. Struct. Biol. 10, 607 (2000).

    Article  Google Scholar 

  2. B.R. Lentz, D.P. Siegel, V. Malinin, Biophys. J. 82, 557 (2002).

    Google Scholar 

  3. L.K. Tamm, J. Crane, V. Kiessling, Curr. Opin. Struct. Biol. 13, 453 (2003).

    Article  Google Scholar 

  4. D. Gindell, L. Ginsberg, Problems in physical interpretation of membrane interaction and fusion, in Membrane Fusion, edited by G. Paste, G.L. Nicolson (Elsevier/North-Holland Biomedical Press, 1978) pp. 791-833.

  5. S.W. Hui, T.P. Stewart, L.T. Boni, Science 212, 921 (1981).

    Google Scholar 

  6. M.M. Kozlov, V.S. Markin, Biofizika 28, 242 (1983).

    Google Scholar 

  7. D.P. Siegel, Biophys. J. 65, 2124 (1993).

    Google Scholar 

  8. D.P. Siegel, Biophys. J. 76, 291 (1999).

    Google Scholar 

  9. V.S. Markin, J.P. Albanesi, Biophys. J. 82, 693 (2002).

    Google Scholar 

  10. Y. Kozlovsky, M.M. Kozlov, Biophys. J. 82, 882 (2002).

    Google Scholar 

  11. Y. Kozlovsky, L.V. Chernomordik, M.M. Kozlov, Biophys. J. 83, 2634 (2002).

    Google Scholar 

  12. P.L. Kuzmin, J. Zimmerberg, Y.A. Chizmadzhev, F.S. Cohen, Proc. Natl. Acad. Sci. U.S.A. 98, 7235 (2001).

    Article  Google Scholar 

  13. Note that within the framework of the recent model of the stalk [10], the hemifusion is equivalent to the trans-monolayer contact (TMC).

  14. L. Yang, H.W. Huang, Science 297, 1877 (2002).

    Article  Google Scholar 

  15. L. Yang, H.W. Huang, Biophys. J. 84, 1808 (2003); L. Yang, L. Ding, H.W. Huang, Biochemistry 42, 6631 (2003).

    Google Scholar 

  16. D.C. Turner, S.M. Gruner, Biochemistry 31, 1340 (1992).

    Google Scholar 

  17. M. Rappolt, A. Hickel, F. Bringezu, K. Lohner, Biophys. J. 84, 3111 (2003).

    Google Scholar 

  18. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA, 1994).

  19. B.P. Jena, S.-J. Cho, A. Jeremic, M.H. Stromer, R. Abu-Hamdah, Biophys. J. 84, 1337 (2003).

    Google Scholar 

  20. M.M. Kozlov, L.V. Chernomordik, Biophys. J. 75, 1384 (1998).

    Google Scholar 

  21. G.I. Bell, M. Dembo, P. Bongrand, Biophys. J. 45, 1051 (1984).

    Google Scholar 

  22. R. Bruinsma, M. Goulian, P. Pincus, Biophys. J. 67, 746 (1994).

    Google Scholar 

  23. R. Bruinsma, A. Behrisch, E. Sackmann, Phys. Rev. E 61, 4253 (2000).

    Article  Google Scholar 

  24. D.M. Zuckerman, R. Bruinsma, Phys. Rev. Lett. 74, 3900 (1995); Phys. Rev. E 57, 964 (1998).

    Article  Google Scholar 

  25. R. Lipowsky, Phys. Rev. Lett. 77, 1652 (1996).

    Article  Google Scholar 

  26. T.R. Weikl, R. Lipowsky, Phys. Rev. E 64, 011903 (2001).

    Article  Google Scholar 

  27. T.R. Weikl, D. Andelman, S. Komura, R. Lipowsky, Eur. Phys. J. E 8, 59 (2002).

    Article  Google Scholar 

  28. J. Nardi, R. Bruinsma, E. Sackmann, Phys. Rev. E 58, 6340 (1998); J. Nardi, T. Feder, R. Bruinsma, E. Sackmann, Europhys. Lett. 37, 371 (1997).

    Article  Google Scholar 

  29. R. Bruinsma, E. Sackmann, C. R. Acad. Sci. Paris 2, 803 (2001).

    Article  Google Scholar 

  30. P.-G. de Gennes, P.-H. Puech, F. Brochard-Wyart, Langmuir 19, 7112 (2003).

    Article  Google Scholar 

  31. S.Y. Qi, J.T. Groves, A.K. Chakraborty, Proc. Natl. Acad. Sci. U.S.A. 98, 6548 (2001).

    Article  Google Scholar 

  32. S. Raychaudhuri, A.K. Chakraborty, M. Kardar, Phys. Rev. Lett. 91, 208101 (2003).

    Article  Google Scholar 

  33. H.-Y. Chen, Phys. Rev. E 67, 031919 (2003).

    Article  Google Scholar 

  34. C.W. Maier, A. Behrisch, A. Kloboucek, D.A. Simson, R. Merkel, Eur. Phys. J. E 6, 273 (2001).

    Article  Google Scholar 

  35. J. Israelachvili, Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (Elsevier, Amsterdam, 1991).

  36. W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

    Google Scholar 

  37. R. Bar-Ziv, R. Menes, E. Moses, S.A. Safran, Phys. Rev. Lett. 75, 3356 (1995).

    Article  Google Scholar 

  38. R. Menes, S.A. Safran, D. Kessler, Europhys. Lett. 40, 225 (1997).

    Article  Google Scholar 

  39. R. Menes, S.A. Safran, Phys. Rev. E 56, 1891 (1997).

    Article  Google Scholar 

  40. This is similar to the case of membrane-induced interactions between inclusions (for a single bilayer membrane): N. Dan, P. Pincus, S.A. Safran, Langmuir 9, 2768 (1993); N. Dan, A. Berman, P. Pincus, S.A. Safran, J. Phys. II, 4, 1713 (1994).

    Google Scholar 

  41. Note, that we obtain the expression for the interaction free energy between two junctions which is different by a numerical factor from the corresponding one reported in reference [22].

  42. G. Lei, R.C. MacDonald, Biophys. J. 85, 1585 (2003).

    Google Scholar 

  43. M. Muller, K. Katsov, M. Schick, Biophys. J. 85, 1611 (2003); J. Chem. Phys. 116, 2342 (2002).

    Google Scholar 

  44. M.J. Stevens, J.H. Hoh, T.B. Wolf, Phys. Rev. Lett. 91, 188102 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Lukatsky.

Additional information

PACS:

87.16.Dg Membranes, bilayers, and vesicles - 68.05.-n Liquid-liquid interfaces - 64.60.-i General studies of phase transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukatsky, D.B., Frenkel, D. Multiple stalk formation as a pathway of defect-induced membrane fusion. Eur. Phys. J. E 14, 3–6 (2004). https://doi.org/10.1140/epje/i2004-10005-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10005-5

Keywords

Navigation