Skip to main content
Log in

Stability of dense hydrophobic-polar copolymer globules: Regular, random and designed sequences

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Stability of dense globular structures formed by amphiphilic copolymers consisting of hydrophobic (insoluble) units and a small fraction of single polar (soluble) monomer units is considered in the mean-field approximation for different types of unit distributions along the chain. Polar (P) units are located in a relatively thin surface layer due to their strong repulsion from hydrophobic (H) monomer units. We compared globules formed by different copolymer sequences with the same gross numbers of P- and H-units: regular HP-sequences (P-units separated by equal H-blocks), random copolymers (uncorrelated positions of P-units, i.e. Flory distribution of H-block lengths), proteinlike (PL) sequences (designed sequences involving both long H-blocks dominating by total mass, and short blocks dominating by number). We showed that PL-globules are more stable (lower free energy) and are characterized by a higher temperature of the coil-to-globule transition when compared with the other sequences mentioned above. We also considered HP-H-copolymers consisting of one long and many short hydrophobic blocks; we showed that it is these sequences that yield the dense globules corresponding to the lowest free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.I. Shakhnovich, A. Gutin, Biophys. Chem. 34, 187 (1989).

    Article  Google Scholar 

  2. E.I. Shakhnovich, A. Gutin, J. Chem. Phys. 93, 5967 (1990).

    Article  ADS  Google Scholar 

  3. M. Eigen, R. Winkler-Oswatitsch, Steps Towards Life: a Perspective on Evolution (Oxford University Press, Oxford, New York, 1992).

  4. E.I. Shakhnovich, A.M. Gutin, Proc. Natl. Acad. Sci. U.S.A. 90, 7195 (1993).

    Article  ADS  Google Scholar 

  5. V.S. Pande, A.Yu. Grosberg, T. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 91, 12976 (1994).

    Article  ADS  Google Scholar 

  6. V.S. Pande, A.Yu. Grosberg, T. Tanaka, J. Chem. Phys. 101, 8246 (1994).

    Article  ADS  Google Scholar 

  7. V.S. Pande, A.Yu. Grosberg, T. Tanaka, J. Phys. (Paris) 4, 1771 (1994).

    Google Scholar 

  8. S. Ramanathan, E.I. Shakhnovich, Phys. Rev. E 72, 3907 (1994).

    Google Scholar 

  9. E.I. Shakhnovich, Phys. Rev. Lett. 72, 3907 (1994).

    Article  ADS  Google Scholar 

  10. H. Li, A. Helling, C. Tang, N. Vingreen, Science 273, 666 (1996).

    Article  ADS  Google Scholar 

  11. C.D. Sfatos, E.I. Shakhnovich, Phys. Rep. 288, 77 (1997).

    Article  ADS  Google Scholar 

  12. A.Yu. Grosberg, Usp. Fiz. Nauk (Russ. Phys. Usp.) 167, 129 (1997).

    Article  Google Scholar 

  13. A.R. Khokhlov, P.G. Khalatur, Physica A 249, 253 (1998).

    Article  ADS  Google Scholar 

  14. A.R. Khokhlov, Khalatur P.G. Phys. Rev. Lett. 82, 3456 (1999).

    Article  ADS  Google Scholar 

  15. J. Virtanen, C. Baron, H. Tenhu, Macromolecules 33, 336 (2000).

    Article  ADS  Google Scholar 

  16. J. Virtanen, H. Tenhu, Macromolecules 33, 5970 (2000).

    Article  ADS  Google Scholar 

  17. V.I. Lozinsky, I.A. Simenel, E.A. Kurskaya, V.K. Kulakova, V.Ya. Grinberg, A.S. Dubovik, I.Yu. Galaev, B. Mattiasson, A.R. Khokhlov, Rep. Russ. Acad. Sci. 375, 637 (2000).

    Google Scholar 

  18. P.-O. Wahlund, I.Yu. Galaev, S.A. Kazakov, V.I. Lozinsky, B. Mattiasson, Macromol. Biosci. 2, 33 (2002)

    Article  Google Scholar 

  19. E.N. Govorun, V.A. Ivanov, A.R. Khokhlov, P.G. Khalatur, A.L. Borovinsky, A.Yu. Grosberg, Phys. Rev. E 64, R40903 (2001).

  20. J.M.P. van der Oever, F.A.M. Leermakers, G.J. Fleer, V.A. Ivanov, N.P. Shusharina, A.R. Khokhlov, P.G. Khalatur, Phys. Rev. E 65, 041708 (2002).

    Article  ADS  Google Scholar 

  21. T. Garel, L. Leibler, H. Orland, J. Phys. II 4, 2139 (1994).

    Google Scholar 

  22. M. Pretti, Phys. Rev. E 66, 031803 (2002).

    Article  ADS  Google Scholar 

  23. I.M. Lifshitz, A.Yu. Grosberg, A.R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978).

    Article  ADS  Google Scholar 

  24. A.N. Semenov, J. Phys. II 6, 1759 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Semenov.

Additional information

Received: 3 July 2003, Published online: 11 November 2003

PACS:

61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govorun, E.N., Khokhlov, A.R. & Semenov, A.N. Stability of dense hydrophobic-polar copolymer globules: Regular, random and designed sequences. Eur. Phys. J. E 12, 255–264 (2003). https://doi.org/10.1140/epje/i2003-10057-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10057-y

Keywords

Navigation