Skip to main content

Advertisement

Log in

The effect of thermal fluctuations on Schulman area elasticity

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the elastic properties of a two-dimensional fluctuating surface whose area density is allowed to deviate from its optimal (Schulman) value. The behavior of such a surface is determined by an interplay between the area-dependent elastic energy, the curvature elasticity, and the entropy. We identify three different elastic regimes depending on the ratio \(A_{\rm p}/A_{\rm s}\) between the projected (frame) and the saturated areas. We show that thermal fluctuations modify the elastic energy of stretched surfaces (\(A_{\rm p}/A_{\rm s} > 1\)), and dominate the elastic energy of compressed surfaces (\(A_{\rm p}/A_{\rm s} < 1\)). When \(A_{\rm p}\sim A_{\rm s}\) the elastic energy is not much affected by the fluctuations; the frame area at which the surface tension vanishes becomes smaller than \(A_{\rm s}\) and the area elasticity modulus increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Rosen, Surfactants and Interfacial Phenomena\/ (Wiley, New York, 1978).

  2. P.G. De Gennes, C. Taupin, J. Phys. Chem. 86, 2294 (1982).

    Google Scholar 

  3. F. David, S. Leibler, J. Phys. II 1, 959 (1991).

    Article  Google Scholar 

  4. U. Seifert, Adv. Phys. 46, 13 (1997) and references therein.

    Google Scholar 

  5. W. Helfrich, Z. Naturforsch. A 33, 305 (1978).

    Google Scholar 

  6. The term “surface” is used in this paper to describe a variety of quasi-two-dimensional systems including simple interfaces, Langmuir monolayers, and self-assembled bilayer membranes.

  7. R. Lipowsky, E. Sackmann (Editors), Structure and Dynamics of Membranes (Elsevier, Amsterdam, 1995).

  8. J. Israelachvili, Intermolecular and Surface Forces\/ (Academic Press, London, 1985).

  9. W.C. Wimley, T.E. Thomson, Biochemistry 30, 1702 (1991).

    Google Scholar 

  10. A. Ben-Shaul, in ref. [7], and references therein.

  11. E. Evans, W. Rawicz, Phys. Rev. Lett. 64, 2094 (1990).

    Article  Google Scholar 

  12. J.H. Schulman, J.B. Montagne, Ann. N. Y. Acad. Sci. 92, 366 (1961).

    Google Scholar 

  13. J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity\/ (Clarendon Press, Oxford, 1982).

  14. The other state variables include the temperature, the number of surface molecules (first model) or the chemical potential (second model), and the volume of the bulk phases. Other ensembles, in which different sets of state variables are used, are also possible. See discussion in Y. Zhang, S.E. Feller, B.R. Brooks, R.W. Pastor, J. Chem. Phys. 103, 10252 (1995).

    Article  Google Scholar 

  15. U. Seifert, Z. Phys. B 97, 299 (1995)

    Google Scholar 

  16. M. Wortis, M. Jarić, U. Seifert, J. Mol. Liq. 71, 195 (1997).

    Article  Google Scholar 

  17. S.T. Milner, S.A. Safran, Phys. Rev. A 36, 4371 (1987).

    Article  Google Scholar 

  18. F. Brochard, P.G. De Gennes, P. Pfeuty, J. Phys. (Paris) 37, 1099 (1976).

    Google Scholar 

  19. D. Marsh, Biophys. J. 73, 865 (1997).

    Google Scholar 

  20. W. Helfrich, R.M. Servuss, Nuovo Cimento D 3, 137 (1984).

    Google Scholar 

  21. W. Cai, T.C. Lubensky, P. Nelson, T. Powers, J. Phys. II 4, 931 (1994).

    Article  Google Scholar 

  22. D.C. Morse, S.T. Milner, Phys. Rev. E 52, 5918 (1995).

    Article  Google Scholar 

  23. S.E. Feller, R.W. Pastor, Biophys. J. 71, 1350 (1996) and references therein.

    Google Scholar 

  24. J.B. Fournier, A. Ajdari, L. Peliti, Phys. Rev. Lett. 86, 4970 (2001).

    Article  Google Scholar 

  25. U. Seifert, R. Lipowsky, in ref. [7] and references therein.

  26. There exist numerous articles summarizing the recent developments in computer simulations of molecular interfaces and bilayer systems, and including many relevant references. See, e.g., J.C. Shelley, M.Y. Shelley, Curr. Opin. Coll. Interface Sci. 5, 101 (2000)

    Article  Google Scholar 

  27. O. Farago, P. Pincus, cond-mat/0307213, submitted to J. Chem. Phys.

  28. In ref. [21] the authors derive the relation \(r=F/A_{\rm p}\) which is correct only for incompressible surfaces. In ref. [27] this result is discussed in the context of compressible surfaces, and it is demonstrated that the correct form (which applies for both compressible and incompressible surfaces) should be \(r= {\rm d} F/{\rm d} A_{\rm p}\).

  29. Since the Monge representation describes the conformation of the surface using a single-valued height function, it excludes configurations in which the surface forms overhangs. In addition to this approximation we also assume that the height function has a moderate slope (see Eqs. (7) and (8)).

  30. P.B. Canham, J. Theor. Biol. 26, 61 (1970).

    Google Scholar 

  31. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).

    Google Scholar 

  32. The expression for the curvature energy in equation (thehamiltonian) is the leading term in an expansion of the elastic energy for small curvatures.

  33. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes\/ (Addison-Wesley, New York, 1994).

  34. L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).

    Article  Google Scholar 

  35. The quantities h q and u q appearing in equations (fourier) and ( meansquare), respectively, are proportional to each other. They both describe the amplitudes of the modes in the Fourier transform of \(h(\vec{r}\,)\), but using different units. The former is dimensionless while the latter has the dimensions of length.

  36. E.M. Blokhuis, D. Bedeaux, Physica A 184, 42 (1992).

    Article  Google Scholar 

  37. O. Farago, J. Chem. Phys. 119, 596 (2003).

    Article  Google Scholar 

  38. R. Goetz, R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).

    Article  Google Scholar 

  39. S.J. Marrink, A.E. Mark, J. Phys. Chem. B 105, 6122 (2001).

    Article  Google Scholar 

  40. S.T. Milner, J.-F. Joanny, P. Pincus, Europhys. Lett. 9, 495 (1989).

    Google Scholar 

  41. J.D. Litster, Phys. Lett. A 53, 193 (1975).

    Article  Google Scholar 

  42. R. Netz, M. Schick, Phys. Rev. E 53, 3875 (1996).

    Article  Google Scholar 

  43. M. Müller, M. Schick, J. Chem. Phys. 105, 8282 (1996).

    Article  Google Scholar 

  44. P. Sens, S.A. Safran, Europhys. Lett. 43, 95 (1998).

    Google Scholar 

  45. J.C. Schillcock, D.H. Boal, Biophys. J. 71, 317 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Farago.

Additional information

Received: 14 July 2002, Published online: 19 August 2003

PACS:

87.16.Dg Membranes, bilayers, and vesicles - 68.03.Cd Surface tension and related phenomena - 05.70.Np Interface and surface thermodynamics

P. Pincus: Also at Physics and Materials Departments and Program in Biomolecular Science and Engineering, UCSB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farago, O., Pincus, P. The effect of thermal fluctuations on Schulman area elasticity. Eur. Phys. J. E 11, 399–408 (2003). https://doi.org/10.1140/epje/i2003-10049-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10049-y

Keywords

Navigation