Skip to main content
Log in

The effects of changes of intermolecular coupling on glass transition dynamics in polymer thin films and glass-formers confined in nanometer pores

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Intermolecular coupling plays an important role in determining the dynamics and the mobility of polymeric and non-polymeric glass-formers. The breadth of the dispersion is an indicator of the intermolecular coupling strength. The coupling model relates intermolecular coupling through the breadth of the dispersion to the dynamics of bulk glass-formers. When a glass-former is confined in nanometer pores or in thin films and if there is absence of chemical and physical interactions with the wall, intermolecular coupling is reduced, resulting in an increase of mobility. The coupling model is used to account for such changes of relaxation time of 1) ortho-terphenyl and poly(dimethyl siloxane) confined in nanometer pores, 2) polymer thin film confined between two impenetrable walls from Monte Carlo simulation, and 3) polymer film confined by perfectly smooth and purely repulsive potential acting on the repeat units from molecular-dynamics simulation. The model continues to explain the opposite effects observed when there is an increase of intermolecular coupling due to the presence of chemical or physical interaction with the walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, New York, 1980).

  2. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Google Scholar 

  3. K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991).

    Article  Google Scholar 

  4. R. Böhmer, J. Non-Cryst. Solids 235-237, 1 (2002).

  5. E.R. Weeks, J.C. Crocker, A. Levitt, A. Schofield, D.A. Weitz, Science 287, 627 (2000).

    Article  Google Scholar 

  6. K.-Y. Tsang, K.L. Ngai, Phys. Rev. E 54, R3067 (1996)

  7. K.L. Ngai, K.-Y. Tsang, Phys. Rev. E 60, 4511 (1999).

    Article  Google Scholar 

  8. K.L. Ngai, Comments Solid State Phys. 9, 121 (1979).

    Google Scholar 

  9. K.L. Ngai, R.W. Rendell, in Supercooled Liquids, Advances and Novel Applications, edited by J.T. Fourkas, ACS Symp. Ser., Vol. 676 (American Chemical Society, Washington, DC, 1997) p. 45.

  10. K.L. Ngai, IEEE Trans. Dielectr. Electr. Insulat. 8, 329 (2001).

    Article  Google Scholar 

  11. For a brief review of the applications of the coupling model to polymer viscoelasticity see K.L. Ngai, D.J. Plazek, R.W. Rendell, Rheol. Acta 36, 307 (1997).

    Article  Google Scholar 

  12. R. Kohlrausch, Pogg. Ann. Phys. 12, 393 (1847).

    Google Scholar 

  13. K.L. Ngai, C.M. Roland, Macromolecules 26, 6824 (1993).

    Google Scholar 

  14. D.J. Plazek, K.L. Ngai, Macromolecules 24, 1222 (1991).

    Google Scholar 

  15. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  Google Scholar 

  16. C. León, K.L. Ngai, J. Phys. Chem. B 103, 4045 (1999).

    Article  Google Scholar 

  17. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996).

    Article  Google Scholar 

  18. K.L. Ngai, J. Chem. Phys. 111, 3639 (1999).

    Article  Google Scholar 

  19. K.L. Ngai, C.M. Roland, Polymer 43, 567 (2002).

    Article  Google Scholar 

  20. K.L. Ngai, L.-R. Bao, A.F. Yee, C.L. Soles, Phys. Rev. Lett. 87, 215901 (2001).

    Article  Google Scholar 

  21. M. Paluch, R. Casalini, C.M. Roland, Phys. Rev. B 66, 092202 (2002).

    Article  Google Scholar 

  22. T. Ruths, PhD Thesis, Johannes Gutenberg University, Mainz (1997)

  23. K.L. Ngai, J. Phys. Condens. Matter 11, A119 (1999).

  24. M. Arndt, R. Stannarius, H. Groothues, E. Hempel, F. Kremer, Phys. Rev. Lett. 79, 2077 (1997).

    Article  Google Scholar 

  25. K.L. Ngai, J. Phys. IV 10, Pr7-21 (2000).

    Google Scholar 

  26. E. Donth, J. Non-Cryst. Solids 131-133, 204 (1991).

  27. E.W. Fischer, E. Donth, W. Steffen, Phys. Rev. Lett. 68, 2344 (1992).

    Article  Google Scholar 

  28. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).

    Article  Google Scholar 

  29. A.K. Rizos, K.L. Ngai, Phys. Rev. E 59, 612 (1999).

    Article  Google Scholar 

  30. (a) G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)

    Google Scholar 

  31. F. Kremer, A. Huwe, A. Schönhals, A.S. Rozanski, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schoenhals (Springer-Verlag, Berlin, 2002) p. 171.

  32. K.U. Kirst, F. Kremer, T. Pakula, T.J. Hollingshurst, J. Colloid Polym. Sci. 272, 1420 (1994).

    Google Scholar 

  33. R.W. Rendell, K.L. Ngai, J. Non-Cryst. Solids 131-133, 942 (1991).

  34. Ch. Schick, A. Schönhals, in preparation.

  35. A. Schönhals, H. Goering, Ch. Schick, in preparation.

  36. U. Buchenau, R. Zorn, Europhys. Lett. 18, 523 (1992).

    Google Scholar 

  37. B. Frick, D. Richter, Phys. Rev. B 47, 14795 (1993).

    Article  Google Scholar 

  38. W. Petry, J. Wuttke, Trans. Theor. Stat. Phys. 24, 1075 (1995).

    Google Scholar 

  39. A. Mermet, E. Duval, N.V. Surovtev, J.F. Jal, A.J. Dianoux, A.F. Yee, Europhys. Lett. 38, 515 (1997).

    Google Scholar 

  40. T. Kanaya, T. Tsukushi, K. Kaji, J. Bartos, J. Kristiak, J. Phys. Rev. E 60, 1906 (1999).

    Article  Google Scholar 

  41. D. Engberg, A. Wischnewski, U. Buchenau, L. Börjesson, A.J. Dianoux, A.P. Sokolov, L.M. Torell, Phys. Rev. B 58, 9087 (1998).

    Article  Google Scholar 

  42. K.L. Ngai, L.-R. Bao, A.F. Yee, C.L. Soles, Phys. Rev. Lett. 87, 215901 (2001).

    Article  Google Scholar 

  43. G.P. Johari, G. Power, J.K. Vij, J. Chem. Phys. 116, 5908 (2002).

    Article  Google Scholar 

  44. S. Yagihara, J. Non-Cryst. Solids 235-237, 412 (1998).

  45. S. Corezzi, J. Chem. Phys. 117, 2435 (2002).

    Article  Google Scholar 

  46. A. Schönhals, H. Goering, Ch. Schick, B. Frick, R. Zorn, this issue, p. \(\bullet\).

  47. G. Strobl, The Physics of Polymers, 2nd edition (Springer, Berlin, 1997).

  48. M.J. Schroeder, C.M. Roland, Macromolecules 35, 2676 (2002).

    Article  Google Scholar 

  49. P. Scheidler, W. Kob, K. Binder, J. Phys. IV 10, Pr7-33 (2000)

    Google Scholar 

  50. P. Scheidler, W. Kob, K. Binder, G. Parisi, Philos. Mag. B 82, 283 (2002).

    Article  Google Scholar 

  51. K.L. Ngai, Philos. Mag. B 82, 291 (2002).

    Article  Google Scholar 

  52. K.L. Ngai, Eur. Phys. J. E 8, 225 (2002).

    Google Scholar 

  53. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Google Scholar 

  54. J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).

    Article  Google Scholar 

  55. K. Tanaka, A. Takahara, T. Kajiyama, Macromolecules 33, 7588 (2000).

    Article  Google Scholar 

  56. C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002).

    Google Scholar 

  57. L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).

    Google Scholar 

  58. (a) S.H. Anastasiadis, K. Karatasos, G. Vlachos, E. Manias, E.P. Giannelis, Phys. Rev. Lett. 84, 915 (2000)

    Article  Google Scholar 

  59. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 197 (2001).

    Article  Google Scholar 

  60. C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  61. F. Varnik, J. Baschnagel, K. Binder, M. Mareschal, this issue, p. \(\bullet\). For a previous work, see F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Google Scholar 

  62. For an extensive review of viscoelastic properties of polymers, see K.L. Ngai, D.J. Plazek, Rubber Chem. Tech. Rubber Rev. 68, 376 (1995).

    Google Scholar 

  63. C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys. Rev. E 57, 843 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Ngai.

Additional information

Received: 1 January 2003, Published online: 8 October 2003

PACS:

64.70.Pf Glass transitions - 68.60.Bs Mechanical and acoustical properties - 36.20.-r Macromolecules and polymer molecules

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngai, K.L. The effects of changes of intermolecular coupling on glass transition dynamics in polymer thin films and glass-formers confined in nanometer pores. Eur. Phys. J. E 12, 93–100 (2003). https://doi.org/10.1140/epje/i2003-10029-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10029-3

Keywords

Navigation