Skip to main content
Log in

Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the orientation profile and the structure of topological defects of a nematic liquid crystal around a spherical particle using an adaptive mesh refinement scheme developed by us previously. The previous work [J. Fukuda et al., Phys. Rev. E 65, 041709 (2002)] was devoted to the investigation of the fine structure of a hyperbolic hedgehog defect that the particle accompanies and in this paper we present the equilibrium profile of the Saturn ring configuration. The radius of the Saturn ring r d in units of the particle radius R 0 increases weakly with the increase of \(\xi\), the ratio of the nematic coherence length to R 0. Next we discuss the energetic stability of a hedgehog and a Saturn ring. The use of adaptive mesh refinement scheme together with a tensor orientational order parameter \(Q_{\alpha\beta}\) allows us to calculate the elastic energy of a nematic liquid crystal without any assumption of the structure and the energy of the defect core as in the previous similar studies. The reduced free energy of a nematic liquid crystal, \(\overline{F} = F/L_1 R_0\), with L 1 being the elastic constant, is almost independent of \(\xi\) in the hedgehog configuration, while it shows a logarithmic dependence in the Saturn ring configuration. This result clearly indicates that the energetic stability of a hedgehog to a Saturn ring for a large particle is definitely attributed to the large defect energy of the Saturn ring with a large radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Poulin, V.A. Raghunathan, P. Richetti, D. Roux, J. Phys. II France 4, 1557 (1994); V.A. Raghunathan, P. Richetti, D. Roux, Langmuir 12, 3789 (1996); V.A. Raghunathan, P. Richetti, D. Roux, F. Nallet, A.K. Sood, Mol. Cryst. Liq. Cryst. 288, 181 (1996); Langmuir, 16, 4720 (2000)

    Article  Google Scholar 

  2. P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997)

    Article  Google Scholar 

  3. P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998)

    Article  Google Scholar 

  4. P. Poulin, Current Opinion Colloid Interface Sci. 4, 66 (1999)

    Article  Google Scholar 

  5. P. Poulin, N. Francés, O. Mondain-Monval, Phys. Rev. E 59, 4384 (1999)

    Article  Google Scholar 

  6. O. Mondain-Monval, J.C. Dedieu, T. Gulik-Krzywicki, P. Poulin, Eur. Phys. J. B 12, 167 (1999)

    Article  Google Scholar 

  7. M. Zapotocky, L. Ramos, P. Poulin, T.C. Lubensky, D.A. Weitz, Science 283, 209 (1999); L. Ramos, M. Zapotocky, T.C. Lubensky, D.A. Weitz, Phys. Rev. E 66, 031711 (2002)

    Article  Google Scholar 

  8. S.P. Meeker, W.C.K. Poon, J. Crain, E.M. Terentjev, Phys. Rev. E 61, R6083 (2000); V.J. Anderson, E.M. Terentjev, S.P. Meeker, J. Crain, W.C.K. Poon, Eur. Phys. J. E 4, 11 (2001); V.J. Anderson, E.M. Terentjev, Eur. Phys. J. E 4, 21 (2001)

    Google Scholar 

  9. J.-C. Loudet, P. Barois, P. Poulin, Nature (London) 407, 611 (2000); J.C. Loudet, P. Poulin, P. Barois, Europhys. Lett. 54, 175 (2001)

    Google Scholar 

  10. J. Yamamoto, H. Tanaka, Nature (London) 409, 321 (2001)

    Article  Google Scholar 

  11. V.G. Nazarenko, A.B. Nych, B.I. Lev, Phys. Rev. Lett. 87, 075504 (2001)

    Article  Google Scholar 

  12. P. Cluzeau, V. Dolganov, P. Poulin, G. Joly, H.T. Nguyen, Mol. Cryst. Liq. Cryst. 364, 381 (2001); P. Cluzeau, P. Poulin, G. Joly, H.T. Nguyen, Phys. Rev. E 63, 031702 (2001); P. Cluzeau, G. Joly, H.T. Nguyen, V.K. Dolganov, JETP Lett. 75, 482 (2002); JETP Lett. 76, 351 (2002); P. Cluzeau, V. Bonnand, G. Joly, V. Dolganov, H.T. Nguyen, Eur. Phys. J. E 10, 231 (2003)

    Google Scholar 

  13. M. Mitov, C. Portet, C. Bourgerette, E. Snoeck, M. Verelst, Nature Materials 1, 229 (2002)

    Article  Google Scholar 

  14. T. Bellini, M. Caggioni, N.A. Clark, F. Mantegazza, A. Maritan, A. Pelizzola, Phys. Rev. Lett. 91, 085704 (2003)

    Google Scholar 

  15. S.L. Lopatnikov, V.A. Namiot, Zh. Eksp. Teor. Fiz. 25, 361 (1978) [Sov. Phys. JETP 48, 180 (1978)]

    Google Scholar 

  16. S. Ramaswamy, R. Nityananda, V.A. Raghunathan, J. Prost, Mol. Cryst. Liq. Cryst. 288, 175 (1996)

    Google Scholar 

  17. R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 55, 2958 (1997)

    Article  Google Scholar 

  18. T.C. Lubensky, D. Pettey, N. Currier, H. Stark, Phys. Rev. E 57, 610 (1998)

    Article  Google Scholar 

  19. B.I. Lev, P.M. Tomchuk, Phys. Rev. E 59, 591 (1999); S.B. Chernyshuk, B.I. Lev, H. Yokoyama Sov. Phys. JETP 93, 760 (2001); B.I. Lev, S.B. Chernyshuk, P.M. Tomchuk, H. Yokoyama, Phys. Rev. E 65, 021709 (2002)

    Article  Google Scholar 

  20. M.S. Turner, P. Sens, Phys. Rev. E 55, R1275 (1997); P. Sens, M.S. Turner, P. Pincus, Phys. Rev. E 55, 4394 (1997); P. Sens, M.S. Turner, J. Phys. II France 7, 1855 (1997); M.S. Turner, P. Sens, Phys. Rev. E 57, 823 (1998)

    Article  Google Scholar 

  21. J. Groenwold, G.H. Fredrickson, Eur. Phys. J.E 5, 171 (2001)

    Article  Google Scholar 

  22. R. Adhikari, Eur. Phys. J. E 9, 127 (2002)

    Google Scholar 

  23. J. Fukuda, B.I. Lev, H. Yokoyama, Phys. Rev. E 65, 031710 (2002)

    Article  Google Scholar 

  24. J. Fukuda, B.I. Lev, K.M. Aoki, H. Yokoyama, Phys. Rev. E 66, 051711 (2002); Mol. Cryst. Liq. Cryst. (to be published); J. Fukuda, B.I. Lev, H. Yokoyama, J. Phys.: Condens. Matter 15, 3841 (2003)

    Article  Google Scholar 

  25. A. Borštnik, H. Stark, S. Žumer, Phys. Rev. E 60, 4210 (1999); Phys. Rev. E 61, 2831 (2000)

    Article  Google Scholar 

  26. P. Galatola, J.-B. Fournier, Phys. Rev. Lett. 86, 3915 (2001); J.-B. Fournier, P. Galatola, Phys. Rev. E 65, 032702 (2002); H. Stark, Phys. Rev. E 66, 041705 (2002); P. Galatola, J.-B. Fournier, H. Stark, Phys. Rev. E 67, 031404 (2003)

    Article  Google Scholar 

  27. N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979)

    MathSciNet  Google Scholar 

  28. H.-R. Trebin, Adv. Phys. 31, 195 (1982)

    MathSciNet  Google Scholar 

  29. M. Kléman, Points, lines, and walls: in liquid crystals, magnetic systems, and various ordered media (Wiley, New York, 1983)

  30. P.M. Chaikin, T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995)

  31. D.R. Nelson, Defects and Geometry in Condensed Matter Physics, (Cambridge University Press, Cambridge, 2002)

  32. S. Chandrasekhar, Liquid Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  33. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Oxford University Press, Oxford, 1993)

  34. D. Demus, L. Richter, Textures of Liquid Crystals (Verlag Chemie, New York, 1978)

  35. Y. Gu, N.L. Abbott, Phys. Rev. Lett. 85, 4719 (2000)

    Article  Google Scholar 

  36. R.B. Meyer, Mol. Cryst. Liq. Cryst. 16, 355 (1972)

    Google Scholar 

  37. D. Pettey, T.C. Lubensky, D.R. Link, Liq. Cryst. 25, 579 (1998)

    Article  Google Scholar 

  38. E.M. Terentjev, Phys. Rev. E 51, 1330 (1995)

    Article  Google Scholar 

  39. O.V. Kuksenok, R.W. Ruhwandl, S.V. Shiyanovskii, E.M. Terentjev, Phys. Rev. E 54, 5198 (1996)

    Article  Google Scholar 

  40. S.V. Shiyanovskii, O.V. Kuksenok, Mol. Cryst. Liq. Cryst. 321, 45 (1998)

    Google Scholar 

  41. R.W. Ruhwandl, E.M. Terentjev, Phys. Rev. E 56, 5561 (1997)

    Article  Google Scholar 

  42. H. Stark, Eur. Phys. J. B 10, 311 (1999); Phys. Rep. 351, 387 (2001)

    Article  Google Scholar 

  43. J.L. Billeter, R.A. Pelcovits, Phys. Rev. E 62, 711 (2000)

    Article  Google Scholar 

  44. D. Andrienko, G. Germano, M.P. Allen, Phys. Rev. E 63, 041701 (2001)

    Article  Google Scholar 

  45. D. Andrienko, M.P. Allen, G. Skačej, S. Žumer, Phys. Rev. E 65, 041702 (2002)

    Article  Google Scholar 

  46. H. Stark, J. Stelzer, R. Bernhard, Eur. Phys. J. B 10, 515 (1999)

    Article  Google Scholar 

  47. P. Patrício, M. Tasinkevych, M.M. Telo da Gama, Eur. Phys. J. E 7, 117 (2002)

    Article  Google Scholar 

  48. M. Tasinkevych, N.M. Silvestre, P. Patrício, M.M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002)

    Google Scholar 

  49. S. Grollau, E.B. Kim, O. Guzmán, N.L. Abbott, J.J. de Pablo, J. Chem. Phys. 119, 2444 (2003)

    Article  Google Scholar 

  50. J. Fukuda, H. Stark, M. Yoneya, H. Yokoyama, Phys. Rev. E (to be published)

  51. E.B. Kim, R. Faller, Q. Yan, N.L. Abbott, J.J. de Pablo, J. Chem. Phys. 117, 7781 (2002)

    Article  Google Scholar 

  52. S. Grollau, N.L. Abbott, J.J. de Pablo, Phys. Rev. E 67, 011702 (2003)

    Article  Google Scholar 

  53. S. Grollau, N.L. Abbott, J.J. de Pablo, Phys. Rev. E 67, 051703 (2003)

    Google Scholar 

  54. R. Yamamoto, Phys. Rev. Lett. 87, 075502 (2001); R. Yamamoto, Y. Nakayama, K. Kim, J. Phys.: Condens. Matter (to be published)

    Article  Google Scholar 

  55. K. Good, C.M. Care, I. Halliday, D.J. Cleaver, the 19th International Liquid Crystal Conference, Edinburgh, UK (2002), Contributed Lecture C46 (unpublished)

  56. J.C. Loudet, P. Poulin, Phys. Rev. Lett. 87, 165503 (2001)

    Article  Google Scholar 

  57. J.C. Loudet, O. Mondain-Monval, P. Poulin, Eur. Phys. J. E 7, 205 (2002)

    Article  Google Scholar 

  58. N. Schopohl, T.J. Sluckin, Phys. Rev. Lett. 59, 2582 (1987), Phys. Rev. Lett. 60, 755 (1988); A. Sonnet, A. Kilian, S. Hess, Phys. Rev. A 52, 718 (1995)

    Article  Google Scholar 

  59. J. Fukuda, H. Yokoyama, Eur. Phys. J. E 4, 389 (2001)

    Article  Google Scholar 

  60. J. Fukuda, M. Yoneya, H. Yokoyama, Phys. Rev. E 65, 041709 (2002)

    Article  Google Scholar 

  61. J. Fukuda, M. Yoneya, H. Yokoyama, Mol. Cryst. Liq. Cryst. (to be published)

  62. J. Fukuda, H. Stark, M. Yoneya, H. Yokoyama, J. Phys.: Condens. Matter (to be published)

  63. P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977)

    Article  Google Scholar 

  64. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  65. J. Fukuda, H. Yokoyama, Phys. Rev. E 66, 012703 (2002)

    Article  Google Scholar 

  66. In the text we do not use the word “regular” in a mathematically strict way. Sufficient conditions for the convergence of the series (A.8) for fixed r are found in E.W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea, New York, 1955)

  67. J.T. Oden, T. Strouboulis, P. Devloo, Comp. Meth. Appl. Mech. Engrg. 59, 327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Fukuda.

Additional information

Received: 10 December 2003, Published online: 2 March 2004

PACS:

61.30.Cz Molecular and microscopic models and theories of liquid crystal structure - 61.30.Jf Defects in liquid crystals - 82.20.Wt Computational modeling; simulation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, Ji., Yoneya, M. & Yokoyama, H. Nematic liquid crystal around a spherical particle: Investigation of the defect structure and its stability using adaptive mesh refinement. Eur. Phys. J. E 13, 87–98 (2004). https://doi.org/10.1140/epje/e2004-00043-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2004-00043-2

Keywords

Navigation