Skip to main content
Log in

Open questions and promising new fields in dewetting

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

This contribution summarizes the present understanding of dewetting focusing on three points that are either controversial or open. The first issue concerns the initial formation of holes, i.e. the film rupture. The second point concerns the unstable growth of holes, i.e. the transversal instability of the receding contact line. Finally, recent extensions towards dewetting on heterogeneous substrates are examined. In passing the long time evolution in dewetting and the coupling of dewetting with other effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Kapitza, S.P. Kapitza, Zh. Exp. Teor. Fiz. 19, 105 (1949)

    Google Scholar 

  2. G. Reiter, Phys. Rev. Lett. 68, 75 (1992)

    Article  Google Scholar 

  3. G. Reiter, Langmuir 9, 1344 (1993)

    Google Scholar 

  4. V.S. Mitlin, J. Colloid Interface Sci. 156, 491 (1993)

    Article  Google Scholar 

  5. E. Ruckenstein, R. Jain, J. Chem. Soc. Faraday Trans. II 70, 132 (1974)

    Google Scholar 

  6. M.B. Williams, S.H. Davis, J. Colloid Interface Sci. 90, 220 (1982)

    Google Scholar 

  7. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  8. J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Google Scholar 

  9. A. Vrij, Disc. Faraday Soc. 42, 23 (1966)

    Google Scholar 

  10. A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)

    Article  Google Scholar 

  11. J.W. Cahn, J. Chem. Phys. 42, 93 (1965)

    Google Scholar 

  12. J.S. Langer, 297-363, in Godreche [105] (1992)

  13. U. Thiele, M.G. Velarde, K. Neuffer, Phys. Rev. Lett. 87, 016104 (2001)

    Google Scholar 

  14. R. Blossey, Ann. Phys.-Berlin 10, 733 (2001)

    Article  MATH  Google Scholar 

  15. F. Brochard-Wyart, J. Daillant, Can. J. Phys. 68, 1084 (1989)

    Google Scholar 

  16. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Phys. Rev. Lett. 77, 1536 (1996)

    Article  Google Scholar 

  17. U. Thiele, M. Mertig, W. Pompe, Phys. Rev. Lett. 80, 2869 (1998)

    Article  Google Scholar 

  18. R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Phys. Rev. Lett. 81, 1251 (1998)

    Article  Google Scholar 

  19. K. Jacobs, S. Herminghaus, K.R. Mecke, Langmuir 14, 965 (1998)

    Article  Google Scholar 

  20. V.S. Mitlin, J. Colloid Interface Sci. 233, 153 (2001)

    Article  Google Scholar 

  21. K.B. Glaser, T.P. Witelski, Phys. Rev. E 67, 016302 (2003)

    Article  Google Scholar 

  22. M. Bestehorn, A. Pototsky, U. Thiele, Eur. Phys. J. B 33, 457 (2003)

    Google Scholar 

  23. G.F. Teletzke, H.T. Davis, L.E. Scriven, Rev. Phys. Appl. 23, 989 (1988)

    Google Scholar 

  24. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992)

  25. A. Sharma, R. Khanna, Phys. Rev. Lett. 81, 3463 (1998)

    Article  Google Scholar 

  26. A. Oron, Phys. Rev. Lett. 85, 2108 (2000)

    Article  Google Scholar 

  27. M. Bestehorn, K. Neuffer, Phys. Rev. Lett. 87, 046101 (2001)

    Google Scholar 

  28. L. Schwartz, R.V. Roy, R.R. Eley, S. Petrash, J. Colloid Interface Sci. 214, 363 (2001)

    Article  Google Scholar 

  29. P. Ziherl, R. Podgornik, S. Zumer, Phys. Rev. Lett. 84, 1228 (2000)

    Article  Google Scholar 

  30. K.D.F. Wensink, B. Jérôme, Langmuir 18, 413 (2002)

    Article  Google Scholar 

  31. E. Schäffer, U. Steiner, Eur. Phys. J. E 8, 347 (2002)

    Google Scholar 

  32. E. Schäffer, S. Harkema, M. Roerdink, R. Blossey, U. Steiner, Macromolecules 36, 1645 (2003)

    Article  Google Scholar 

  33. U. Thiele, K. Neuffer, Y. Pomeau, M.G. Velarde, Colloid Surf. A 206, 135 (2002)

    Article  Google Scholar 

  34. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nature Mat. 2, 59 (2003)

    Article  Google Scholar 

  35. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001)

    Article  Google Scholar 

  36. U. Thiele, M.G. Velarde, K. Neuffer, Y. Pomeau, Phys. Rev. E 64, 031602 (2001)

    Article  Google Scholar 

  37. A. Novick-Cohen, J. Stat. Phys. 38, 707 (1985)

    Google Scholar 

  38. Sharma proposes to call the regime defect sensitive spinodal regime [50]. However, there satellite holes are created by the spinodal mechanism from a small-amplitude ring-like depression at the periphery of the rim of the primary hole and their distance is determined by the spinodal lengthscale. In variance to this, in the nucleation-dominated subrange within the linearly unstable range we find satellite holes created by secondary nucleation events. In this case, first the depression develops due to the dynamics of the hole growth. When it eventually becomes larger than the relevant nucleation solution fast film rupture occurs leading to secondary or satellite holes (indicated by the steplike aspects of the change of energy with time [Fig. 16b]TVNP01). Thereby, their typical distance is not equal to the spinodal length [Fig. 6]TVN01. However, it is highly probable that the process detailed here and the one described by Sharma refer to two different sub-regimes occuring between the deep spinodal regime and the truly metastable (i.e. only nucleation possible, the film is linearly stable) regime

  39. S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002)

    Article  Google Scholar 

  40. C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, G. Grün, J. Phys: Condens. Matter 15, 3355 (2003)

    Article  Google Scholar 

  41. E.J. Doedel, A.R. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO97: Continuation and bifurcation software for ordinary differential equations (Concordia University, Montreal, 1997)

  42. K. Kargupta, R. Konnur, A. Sharma, Langmuir 16, 10243 (2000)

    Article  Google Scholar 

  43. U. Thiele, Entnetzung von Kollagenfilmen (1998), Ph.D. thesis

  44. J.C. Meredith, A.P. Smith, A. Karim, E.J. Amis, Macromolecules 33, 9747 (2000)

    CAS  Google Scholar 

  45. B.Y. Du, F.C. Xie, Y.J. Wang, Z.Y. Yang, O.K.C. Tsui, Langmuir 18, 8510 (2002)

    Article  Google Scholar 

  46. O.K.C. Tsui, Y.J. Wang, H. Zhao, B. Du, Eur. Phys. J. E 12, 417 (2003)

    Google Scholar 

  47. U. Thiele, Eur. Phys. J. E 12, 427 (2003)

    Google Scholar 

  48. K. Jacobs, Stabilität und Dynamik flüssiger Polymerfilme (1997), Ph.D. thesis, ISBN 3-930803-10-0

  49. K.M. Ashley, J.C. Meredith, E. Amis, D. Raghavan, A. Karim, Polymer 44, 769 (2003)

    Article  Google Scholar 

  50. A. Sharma, Eur. Phys. J. E 12, 397 (2003)

    Google Scholar 

  51. V.S. Mitlin, J. Colloid Interface Sci. 227, 371 (2000)

    Article  Google Scholar 

  52. As the spreading of a drop, the growth of a hole involves the movement of a three-phase contact line that can not be described using the classical no-slip boundary condition at the liquid-solid interface. This problem can be circumvented by introducing a very thin precursor film or allowing for a slip near the contact line [7, 103]. For a discussion of the advantages and disadvantages of these two methods see the introductions of references [68, 104]. However, a satisfying solution of this problem may not be possible in the framework of long wave theory, i.e. using equation ([1])

  53. C. Redon, F. Brochard-Wyart, F. Rondelez, Phys. Rev. Lett. 66, 715 (1991)

    Article  Google Scholar 

  54. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001)

    Article  Google Scholar 

  55. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 87, 196101 (2001)

    Google Scholar 

  56. F. Brochard-Wyart, C. Redon, Langmuir 8, 2324 (1992)

    Google Scholar 

  57. A. Sharma, G. Reiter, J. Colloid Interface Sci. 178, 383 (1996)

    Article  Google Scholar 

  58. J.L. Masson, O. Olufokunbi, P.F. Green, Macromolecules 35, 6992 (2002)

    Article  Google Scholar 

  59. S. Herminghaus, A. Fery, S. Schlagowski, K. Jacobs, R. Seemann, H. Gau, W. Mönch, T. Pompe, J. Phys: Condens. Matter 12, A57 (2000)

  60. M. Elbaum, S. Lipson, Phys. Rev. Lett. 72, 3562 (1994)

    Article  Google Scholar 

  61. M. Elbaum, S. Lipson, Israel J. Chem. 35, 27 (1995)

    Google Scholar 

  62. S. Lipson, Physica Scripta T 67, 63 (1996)

    Google Scholar 

  63. H. Kim, C. Mate, K. Hannibal, S. Perry, Phys. Rev. Lett. 82, 3496 (1999)

    Article  Google Scholar 

  64. M.W.J. van der Wielen, E.P.I. Baars, M. Giesbers, M.A.C. Stuart, G.J. Fleer, Langmuir 16, 10137 (2000)

    Article  Google Scholar 

  65. G. Reiter, A. Sharma, Phys. Rev. Lett. 87, 166103 (2001)

    Google Scholar 

  66. K. Sekimoto, R. Oguma, K. Kawasaki, Ann. Phys. 176, 359 (1987)

    Google Scholar 

  67. A.V. Lyushnin, A.A. Golovin, L.M. Pismen, Phys. Rev. E 65, 021602 (2002)

    Article  Google Scholar 

  68. U. Thiele, E. Knobloch, Phys. Fluids 15, 892 (2003)

    Article  Google Scholar 

  69. U. Thiele, K. Neuffer, M. Bestehorn, Y. Pomeau, M.G. Velarde, Colloid Surf. A 206, 87 (2002)

    Article  Google Scholar 

  70. M.A. Spaid, G.M. Homsy, Phys. Fluids 8, 460 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  71. J.M. Skotheim, U. Thiele, B. Scheid, J. Fluid Mech. 475, 1 (2003)

    Article  Google Scholar 

  72. A. Karim, J.F. Douglas, B.P. Lee, S.C. Glotzer, J.A. Rogers, R.J. Jackman, E.J. Amis, G.M. Whitesides, Phys. Rev. E 57, R6273 (1998)

  73. L. Rockford, Y. Liu, P. Mansky, T.P. Russell, M. Yoon, S.G.J. Mochrie, Phys. Rev. Lett. 82, 2602 (1999)

    Article  Google Scholar 

  74. M. Gleiche, L.F. Chi, H. Fuchs, Nature 403, 173 (2000)

    Article  Google Scholar 

  75. P. Rehse, C. Wang, M. Hund, M. Geoghegan, R. Magerle, G. Krausch, Eur. Phys. J. E 4, 69 (2001)

    Article  Google Scholar 

  76. K.Y. Suh, H.H. Lee, J. Chem. Phys. 115, 8204 (2001)

    Article  Google Scholar 

  77. A. Sehgal, V. Ferreiro, J.F. Douglas, E.J. Amis, A. Karim, Langmuir 18, 7041 (2002)

    Article  CAS  Google Scholar 

  78. K. Mougin, H. Haidara, Europhys. Lett. 61, 660 (2003)

    Article  Google Scholar 

  79. H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283, 46 (1999)

    Article  PubMed  Google Scholar 

  80. A.M. Higgins, R.A.L. Jones, Nature 404, 476 (2000)

    Article  Google Scholar 

  81. P. Lenz, R. Lipowsky, Phys. Rev. Lett. 80, 1920 (1998)

    Article  Google Scholar 

  82. C. Bauer, S. Dietrich, A. Parry, Europhys. Lett. 47, 474 (1999)

    Article  Google Scholar 

  83. C. Bauer, S. Dietrich, Phys. Rev. E 61, 1664 (2000)

    Article  Google Scholar 

  84. R. Konnur, K. Kargupta, A. Sharma, Phys. Rev. Lett. 84, 931 (2000)

    Article  Google Scholar 

  85. K. Kargupta, R. Konnur, A. Sharma, Langmuir 17, 1294 (2001)

    Article  Google Scholar 

  86. K. Kargupta, A. Sharma, Phys. Rev. Lett. 86, 4536 (2001)

    Article  Google Scholar 

  87. R. Lipowsky, Curr. Op. Coll. Surf. Sci. 6, 40 (2001)

    Article  Google Scholar 

  88. M. Brinkmann, R. Lipowsky, J. Appl. Phys. 92, 4296 (2002)

    Article  Google Scholar 

  89. K. Kargupta, A. Sharma, Langmuir 18, 1893 (2002)

    Article  Google Scholar 

  90. L. Brusch, H. Kühne, U. Thiele, M. Bär, Phys. Rev. E 66, 011602 (2002)

    Article  Google Scholar 

  91. U. Thiele, L. Brusch, M. Bestehorn, M. Bär, Eur. Phys. J. E 11, 255 (2003)

    Google Scholar 

  92. M. Böltau, S. Walheim, J. Mlynek, G. Krausch, U. Steiner, Nature 391, 877 (1998)

    Article  Google Scholar 

  93. G. Nisato, B.D. Ermi, J.F. Douglas, A. Karim, Macromolecules 32, 2356 (1999)

    Article  Google Scholar 

  94. R. Yerushalmi-Rozen, T. Kerle, J. Klein, Science 285, 1254 (1999)

    Article  Google Scholar 

  95. R. Magerle, personal communication (2003)

  96. H. Riegler, personal communication (2003)

  97. A.L. Demirel, B. Jérôme, Europhys. Lett. 45, 58 (1999)

    Article  Google Scholar 

  98. A. Knoll, A. Horvat, K.S. Lyakhova, G. Krausch, G.J.A. Sevink, A.V. Zvelindovsky, R. Magerle, Phys. Rev. Lett. 89, 035501 (2002)

    Article  Google Scholar 

  99. S. Schlagowski, K. Jacobs, S. Herminghaus, Europhys. Lett. 57, 519 (2002)

    Article  Google Scholar 

  100. A. Sharma, J. Mittal, Phys. Rev. Lett. 89, 186101 (2002)

    Article  Google Scholar 

  101. L.M. Pismen, Y. Pomeau, Phys. Rev. E 62, 2480 (2000)

    Article  MathSciNet  Google Scholar 

  102. L.M. Pismen, Phys. Rev. E 6402, 021603 (2001)

    Article  Google Scholar 

  103. E.B. Dussan, Ann. Rev. Fluid Mech. 11, 371 (1979)

    Article  Google Scholar 

  104. U. Thiele, M.G. Velarde, K. Neuffer, M. Bestehorn, Y. Pomeau, Phys. Rev. E 64, 061601 (2001)

    Article  Google Scholar 

  105. Solids far from Equilibrium, edited by C. Godreche (Cambridge University Press, 1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Thiele.

Additional information

Received: 1 August 2003

PACS:

68.15. + e Liquid thin films - 68.55.-a Thin film structure and morphology - 47.20.Ma Interfacial instability

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiele, U. Open questions and promising new fields in dewetting. Eur. Phys. J. E 12, 409–416 (2003). https://doi.org/10.1140/epje/e2004-00009-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2004-00009-4

Keywords

Navigation