Skip to main content
Log in

Hugenholtz–Pines relations and the critical temperature of a Rabi coupled binary Bose system

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using a theoretical field Gaussian approximation, we have studied Rabi coupled binary Bose system at low temperatures. We have derived extended Hugenholtz–Pines relations taking into account one body interaction (e.g. Rabi coupling) and studied the critical temperature \(T_c\) of Bose–Einstein condensate transition. We have shown that, the shift of \(T_c\) due to this interaction cannot exceed \(\sim 60 \%\) and goes to a plateau with increasing the parameter \(\Omega _R/T_{c}^{0}\), where \(\Omega _R\) is the intensity of the coupling and \(T_{c}^{0}\) is the critical temperature of the system with \(\Omega _R=0\). Moreover, the shift is always positive and does not depend on the sign of the one body interaction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from both authors on request.]

Notes

  1. By default a and b correspond to the first and the second components of the spinor, respectively. For example, \(g_a\equiv g_1\),\(g_b\equiv g_2\) and \(g_{ab}\equiv g_{12}\).

  2. This rule may be referred as a phase invariance.

  3. For the component b we have the similar expression.

References

  1. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation and Superfluidity (Oxford University Press, New York, 2015)

    MATH  Google Scholar 

  2. D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates. Phys. Rev. Lett. 81, 1539 (1998)

    Article  ADS  Google Scholar 

  3. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, M.J. Holland, J.E. Williams, C.E. Wieman, E.A. Cornell, Watching a Superfluid Untwist Itself: Recurrence of Rabi Oscillations in a Bose-Einstein Condensate. Phys. Rev. Lett. 83, 17 (1999)

    Article  Google Scholar 

  4. T. Zibold, E. Nicklas, Ch. Gross, M.K. Oberthaler, Classical Bifurcation at the Transition from Rabi to Josephson Dynamics. Phys. Rev. Lett. 105, 204101 (2010)

    Article  ADS  Google Scholar 

  5. L. Lavoine, A. Hammond, A. Recati, D.S. Petrov, T. Bourdel, Beyond-mean-field effects in Rabi-coupled two-component Bose-Einstein condensate. Phys. Rev. Lett. 127, 203402 (2021)

    Article  ADS  Google Scholar 

  6. J. Williams, R. Walser, J. Cooper, E.A. Cornell, M. Holland, Excitation of a dipole topological state in a strongly coupled two-component Bose-Einstein condensate. Phys. Rev. A 61, 033612 (2000)

    Article  ADS  Google Scholar 

  7. A. Niederberger, T. Schulte, J. Wehr, M. Lewenstein, L. Sanchez-Palencia, K. Sacha, Disorder-Induced Order in Two-Component Bose-Einstein Condensates. Phys. Rev. Lett. 100, 030403 (2008)

    Article  ADS  Google Scholar 

  8. Xiao Yin, Leo Radzihovsky, Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A 88, 063611 (2013)

    Article  ADS  Google Scholar 

  9. S. Lellouch, A. Dao, T. Koffel, and L. Sanchez-Palencia, Two-component Bose gases with one-body and two-body couplings, Phys. Rev. A 88, 063646 (2013)

    Article  ADS  Google Scholar 

  10. M. Abad, A. Recati, A study of coherently coupled two-component Bose-Einstein condensates. Eur. Phys. J. D 67(7), 148 (2013)

    Article  ADS  Google Scholar 

  11. A. Aftalion, P. Mason, Rabi-coupled two-component Bose-Einstein condensates: Classification of the ground states, defects, and energy estimates. Phys. Rev. A 94, 023616 (2016)

    Article  ADS  Google Scholar 

  12. A. Cappellaro, T. Macrì, G.F. Bertacco, L. Salasnich, Equation of state and self-bound droplet in Rabi-coupled Bose mixtures. Sci Rep 7, 13358 (2017)

    Article  ADS  Google Scholar 

  13. M. Kobayashi, M. Eto, M. Nitta, Berezinskii–Kosterlitz–Thouless transition of two-component Bose mixtures with intercomponent josephson coupling. Phys. Rev. Lett. 123, 075303 (2019)

    Article  ADS  Google Scholar 

  14. V.I. Yukalov, E.P. Yukalova, Bose-Einstein condensation temperature of weakly interacting atoms. Laser Phys. Lett. 14, 073001 (2017)

    Article  ADS  Google Scholar 

  15. G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, D. Vautherin, The transition temperature of the dilute interacting bose gas. Phys. Rev. Lett. 83, 1703 (1999)

    Article  ADS  Google Scholar 

  16. B. Kastening, Bose-Einstein condensation temperature of a homogenous weakly interacting Bose gas in variational perturbation theory through seven loops. Phys. Rev. A 69, 043613 (2004)

    Article  ADS  Google Scholar 

  17. FredericoF de SouzaCruz and MarcusB Pinto, Transition temperature for weakly interacting homogeneous Bose gases, Phys. Rev. B, 64, 014515 (2001)

    Article  ADS  Google Scholar 

  18. V.I. Yukalov, A. Rakhimov, S. Mardonov, Quasi-equilibrium mixture of itinerant and localized bose atoms in optical lattice. Laser Phys. 21, 264–270 (2011)

    Article  ADS  Google Scholar 

  19. H. Kleinert, Z. Narzikulov and A. Rakhimov, Phase transitions in three-dimensional bosonic systems in optical lattices, J. Stat. Mech. P01003, 1742–5468 (2014)

    MATH  Google Scholar 

  20. A. Rakhimov, I.N. Askerzade, Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings. Phys. Rev. E 90, 032124 (2014)

    Article  ADS  Google Scholar 

  21. A. Rakhimov and I. N. Askerzade, Thermodynamics of noninteracting bosonic gases in cubic optical lattices versus ideal homogeneous Bose gases, Int. J. Mod. Phys. B 29, 1550123 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Rakhimov, Sh. Mardonov, E. Ya. Sherman, A. Schilling, The effects of disorder in dimerized quantum magnets in mean field approximations. New J. Phys. 14, 113010 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. A.V. Lopatin, V.M. Vinokur, Thermodynamics of the superfluid dilute bose gas with disorder. Phys. Rev. Lett. 88, 235503 (2002)

    Article  ADS  Google Scholar 

  24. A. Khudoyberdiev, A. Rakhimov, A. Schilling, Bose-Einstein condensation of triplons with a weakly broken U(1) symmetry. New J. Phys. 19, 113002 (2017)

    Article  ADS  Google Scholar 

  25. A. Rakhimov, A. Khudoyberdiev, L. Rani, B. Tanatar, Spin-gapped magnets with weak anisotropies I: Constraints on the phase of the condensate wave function. Ann. Phys. 424, 168361 (2021)

    Article  MathSciNet  Google Scholar 

  26. A. Rakhimov, A. Khudoyberdiev, B. Tanatar, Effects of exchange and weak Dzyaloshinsky- Moriya anisotropies on thermodynamic characteristics of spin-gapped magnets. Int. J. Mod. Phys. B 35, 2150223 (2019)

    Article  ADS  MATH  Google Scholar 

  27. T. Haugset, H. Haugerud, F. Ravndal, Thermodynamics of a weakly interacting Bose - Einstein gas. Ann. Phys. (N.Y.) 266, 27 (1998)

    Article  ADS  Google Scholar 

  28. J. O. Andersen, Theory of the weakly interacting Bose gas, Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N.M. Hugenholtz, D. Pines, Ground-State Energy and Excitation Spectrum of a System of Interacting Bosons. Phys. Rev. 116, 489 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N. N. Bogolubov, Lectures on Quantum Statistics, vol. 2, Gordon and Breach, New York, (1970)

    Google Scholar 

  31. Yu. A. Nepomnyashchil, The microscopic theory of a mixture of superfluid liquids. Zh. Eksp. Teor. Fiz. 70, 1071O80 (1976)

  32. Shohei Watabe, Hugenholtz-Pines theorem for multicomponent Bose-Einstein condensates. Phys. Rev. A 103, 053307 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. H.T.C. Stoof, K.B. Gubbels, D.B.M. Dickerscheid, Ultracold Quantum Fields, Theoretical and Mathematical Physics (Springer, New York, 2004)

    MATH  Google Scholar 

  34. A. Rakhimov, Tan’s contact as an indicator of completeness and self-consistency of a theory. Phys. Rev. A 102, 063306 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Rakhimov, T. Abdurakhmonov, B. Tanatar, Critical behavior of Tan’s contact for bosonic systems with a fixed chemical potential. J. Phys. Condens. Matter 33, 46540111 (2021)

    Article  ADS  Google Scholar 

  36. V.I. Yukalov, Theory of cold atoms: Bose-Einstein statistics. Laser Phys. 26, 062001 (2016)

    Article  ADS  Google Scholar 

  37. P.C. Hohenberg, P.C. Martin, Microscopic theory of superfluid helium. Ann. Phys. 34, 291 (1965)

    Article  ADS  Google Scholar 

  38. A. Rakhimov, Z. Narzikulov, Hohenberg–Martin Dilemma for Bose Condensed Systems and its Solution, Complex Phenomena in Nanoscale Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht (2009)

  39. A. Rakhimov, T. Abdurakhmonov, Z. Narzikulov, V.I. Yukalov, Self-consistent theory of a homogeneous binary Bose mixture with strong repulsive interspecies interaction. Phys. Rev. A 106, 033301 (2022)

    Article  ADS  Google Scholar 

  40. V.I. Yukalov, H. Kleinert, Gapless Hartree–Fock–Bogoliubov approximation for Bose gases. Phys. Rev. A 73, 063612 (2006)

    Article  ADS  Google Scholar 

  41. D.C. Wood, The computation of polylogarithm. Technical report 15-92, University of Kent (1992)

  42. J.H. Kim, D. Hong, Y. Shin, Observation of two sound modes in a binary superfluid gas. Phys. Rev. A 101, 061601(R) (2020)

Download references

Acknowledgements

We are indebted to S. Watabe and V. Yukalov for useful discussions.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AR and AK made substantial and equal contributions to the conception or design of the work; writing—original draft preparation, analysis, or interpretation of data; or the creation of software used in the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asliddin Khudoyberdiev.

Ethics declarations

Conflict of interest

Author Abdulla Rakhimov declares that he has no conflict of interest. Author Asliddin Khudoyberdiev declares that he has no conflict of interest.

Appendices

Appendix

Relation between the phases and phase invariance

In present “Appendix” we show that, the stability condition with respect to the relative phase \(\xi =\exp (i\theta )\) leads to the relation \(\xi \omega _R=-1\). In fact, the relative phase angle \(\theta \), should correspond to the minimum of \(\Omega _0\):

$$\begin{aligned} \frac{\partial \Omega _0}{\partial \theta }=0, \quad \frac{\partial ^2\Omega _0}{\partial \theta ^2}>0 \end{aligned}$$
(A.1)

In general, \(\Omega _0\) is given by

$$\begin{aligned} \Omega _0= & {} V[-\mu \rho _{0a}-\mu \rho _{0b}+\displaystyle \frac{g_a\rho _{0a}^2}{2}+\displaystyle \frac{g_b\rho _{0b}^2}{2} \nonumber \\{} & {} +g_{ab}\rho _{0a}\rho _{0b}+\displaystyle \frac{\Omega _R\sqrt{\rho _{0a}\rho _{0b}}\xi (\omega _R+\omega _R^\star )}{2}]\nonumber \\ \end{aligned}$$
(A.2)

Besides, in stable equilibrium, the variational parameters \(\rho _{0a}\) and \(\rho _{0b}\) should satisfy the saddle-point equations [12, 27, 28]

$$\begin{aligned}{} & {} \frac{\partial \Omega _0}{\partial \rho _{0a}}{=}0, \quad \frac{\partial \Omega _0}{\partial \rho _{0b}}{=}0, \quad \nonumber \\{} & {} \left( \frac{\partial ^2\Omega _0}{\partial \rho _{0a}^2}\right) \left( \frac{\partial ^2\Omega _0}{\partial \rho _{0b}^2}\right) {-}\left( \frac{\partial ^2\Omega _0}{\partial \rho _{0a}\partial \rho _{0b}}\right) >0 \end{aligned}$$
(A.3)

Now bearing in mind \(\omega _R=e^{-i\theta _R}\), and using Eqs. (A.1), (A.2), we obtain

$$\begin{aligned} \begin{aligned}&\frac{\partial \Omega _0}{\partial \theta }=-V\Omega _R\sqrt{\rho _{0a}\rho _{0b}}\sin (\theta -\theta _R){=}0, \\&\frac{\partial ^2\Omega _0}{\partial \theta ^2}{=}{-}V\Omega _R\sqrt{\rho _{0a}\rho _{0b}}\cos (\theta {-}\theta _R)>0 \end{aligned} \end{aligned}$$
(A.4)

which lead to the well-known [1, 9, 10] result: \(\theta -\theta _R=\pi (2n+1)\) i.e. \(\omega _R\xi =-1\). This physically means that, when the system goes into its equilibrium state, it will choose the relative phase between the two condensates by itself, preferring the case with \(\xi =-\omega _R\), where \(\omega _R\) is in fact the sign of the one body interaction. For example, if the latter is negative, \(\omega _R=-1\), then the condensates will coexist with the same phase \(\xi =+1\), and vise versa. Moreover, particularly, in both cases, with \(\xi =\pm 1\) there always exist in phase and out of phase excitations. The former correspond to the density branch \(\omega _d\), while the latter to the spin branch \(\omega _s\), as it has been clarified in Refs. [39, 42]

Below we show that physical observables do not depend on the relative phase \(\xi \). Actually, in the symmetric case for the self energies we have

$$\begin{aligned} \begin{aligned}&X_1=X_3=-\mu +3\rho _{0a}g+\rho _{0a}g_{ab}=\Sigma _n+\Sigma _{an}-\mu \\&X_2=X_4=-\mu +\rho _{0a}g+\rho _{0a}g_{ab}=\Sigma _n-\Sigma _{an}-\mu \\&X_5=2\xi g_{ab}\rho _{0a}+\frac{\Omega _R\omega _R}{2}, \quad X_6=\frac{\Omega _R\omega _R}{2} \end{aligned}\nonumber \\ \end{aligned}$$
(A.5)

and for the dispersions:

$$\begin{aligned} \begin{array}{l} \omega _1=\sqrt{(\varepsilon _k+X_2+X_6)(\varepsilon _k+X_1+X_5)}, \\ \omega _2= \sqrt{(\varepsilon _k+X_2-X_6)(\varepsilon _k+X_1-X_5)} \end{array} \end{aligned}$$
(A.6)

Now from Eqs. (33), (A.5) and (A.6) it is seen that, e.g. \(\rho _{1a}\) is phase invariant, that is \(\rho _{1a}(\xi ,\omega _{R})=\rho _{1a}(-\xi ,-\omega _{R})\), since the transformation \((\xi ,\omega _{R})\leftrightarrow (-\xi ,-\omega _{R})\) is equivalent to the following replacements: \(X_5\leftrightarrow -X_5\), \(X_6\leftrightarrow -X_6\), \(\omega _1\leftrightarrow \omega _2\). Note that, this statement holds true both for the condensed as well as normal states. Phase invariance of other observables can be proven in the same way.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhimov, A., Khudoyberdiev, A. Hugenholtz–Pines relations and the critical temperature of a Rabi coupled binary Bose system. Eur. Phys. J. D 77, 37 (2023). https://doi.org/10.1140/epjd/s10053-023-00614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00614-8

Navigation