Skip to main content
Log in

Spectral electron energy map of electron impact induced emission of nitrogen

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The processes of electron impact induced fluorescence of nitrogen were studied in the electron energy range from 6 to 100 eV and in the spectral range from 330 to 1030 nm. Using the new CCD camera a Spectral Electron Energy Map of N2 was obtained. This type of data for such a wide spectral and energy range are published for the first time. The most intensive molecular emission bands were neutral nitrogen First positive system N2 (B3Πg − A3u+) and Second positive system N2 (C3Πu − B3Πg), First negative system N2+ (B2u+  − X2g+) and Meinel system N2+ (A2Πu − X2g+). The detected lower intensity transitions were Gaydon-Herman singlet system N2 (1Σu+  − a1Πg / 1Πu+  − a1Πg) and Gaydon-Green system N2 (H3Φu − G3Δg). In addition, processes of dissociative excitation and ionisation were observed, resulting in the photon emission from the neutral and singly ionised nitrogen atoms. The provided Spectral Electron Energy Map allows extraction of (i) electron energy resolved emission spectra of N2 and determination of the absolute values of excitation-emission cross sections, (ii) excitation-emission functions for any of the molecular bands or atomic lines present in the spectra.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article (and its supplementary information files). This manuscript has data included as electronic supplementary material.

References

  1. L. Roth, N. Ivchenko, G.R. Gladstone, J. Saur, D. Grodent, B. Bonfond, P.M. Molyneux, K.D. Retherford, Nat. Astron. 5, 1043 (2021)

    Article  ADS  Google Scholar 

  2. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Science 343(6167), 171–174 (2014)

    Article  ADS  Google Scholar 

  3. D. Bodewits, L.M. Lara, M.F. A’Hearn, F. la Forgia, A. Gicquel, G. Kovacs, J. Knollenberg, M. Lazzarin, Z.-Y. Lin, X. Shi, C. Snodgrass, C. Tubiana, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, M.A. Barucci, J.-L. Bertaux, I. Bertini, S. Boudreault, G. Cremonese, V. da Deppo, B. Davidsson, S. Debei, M. de Cecco, S. Fornasier, M. Fulle, O. Groussin, P.J. Gutiérrez, C. Güttler, S.F. Hviid, W.-H. Ip, L. Jorda, J.-R. Kramm, E. Kührt, M. Küppers, J.J. López-Moreno, F. Marzari, G. Naletto, N. Oklay, N. Thomas, I. Toth, J.-B. Vincent, Astron. J. 152, 130 (2016)

    Article  ADS  Google Scholar 

  4. N.J. Cunningham, J.R. Spencer, P.D. Feldman, D.F. Strobel, K. France, S.N. Osterman, Icarus 254, 178 (2015)

    Article  ADS  Google Scholar 

  5. M. Scherf, H. Lammer, N.V. Erkaev, K.E. Mandt, S.E. Thaller, B. Marty, Space Sci. Rev. 216(8), 1–30 (2020)

    Article  ADS  Google Scholar 

  6. J.T. Fons, R.S. Schappe, C.C. Lin, Phys. Rev. A (Coll Park) 53, 2239 (1996)

    Article  ADS  Google Scholar 

  7. D.C. Cartwright, Phys. Rev. A (Coll Park) 2, 1331 (1970)

    Article  ADS  Google Scholar 

  8. X.-J. Huang, Y. Xin, L. Yang, Q.-H. Yuan, Z.-Y. Ning, Phys. Plasmas 15, 113504 (2008)

    Article  ADS  Google Scholar 

  9. V. Linss, Spectrochim. Acta. Part B At Spectrosc. 60, 253 (2005)

    Article  ADS  Google Scholar 

  10. A. Chutjian, D.C. Cartwright, S. Trajmar, Phys. Rev. A (Coll Park) 16, 1052 (1977)

    Article  ADS  Google Scholar 

  11. L. Campbell, M.J. Brunger, A.M. Nolan, L.J. Kelly, A.B. Wedding, J. Harrison, P.J.O. Teubner, D.C. Cartwright, B. McLaughlin, J. Phys. B At. Mol. Opt. Phys. 34, 1185 (2001)

    Article  ADS  Google Scholar 

  12. G. Poparić, M. Vićić, D.S. Belić, Phys. Rev. A (Coll Park) 60, 4542 (1999)

    Article  ADS  Google Scholar 

  13. S. Chung, C.C. Lin, Phys. Rev. A (Coll Park) 6, 988 (1972)

    Article  ADS  Google Scholar 

  14. A.R. Filippelli, F.A. Sharpton, C.C. Lin, R.E. Murphy, J. Chem. Phys. 76, 3597 (1982)

    Article  ADS  Google Scholar 

  15. M. Imami, W.L. Borst, J. Chem. Phys. 61, 1115 (1974)

    Article  ADS  Google Scholar 

  16. M. Shaw, J. Campos, J. Quant. Spectrosc. Radiat. Transf. 30, 73 (1983)

    Article  ADS  Google Scholar 

  17. T.G. Finn, J.F.M. Aarts, J.P. Doering, J. Chem. Phys. 56, 5632 (1972)

    Article  ADS  Google Scholar 

  18. Y. Tohyama, T. Nagata, J. Physical. Soc. Jpn. 80, 034304 (2011)

    Article  ADS  Google Scholar 

  19. C.P. Malone, P.V. Johnson, J.A. Young, X. Liu, B. Ajdari, M.A. Khakoo, I. Kanik, J. Phys. B At. Mol. Opt. Phys. 42, 225202 (2009)

    Article  ADS  Google Scholar 

  20. M. Zubek, J. Phys. B At. Mol. Opt. Phys. 27, 573 (1994)

    Article  ADS  Google Scholar 

  21. R.S. Mangina, J.M. Ajello, R.A. West, D. Dziczek, Astrophys. J. Suppl. Series 196(1), 13 (2011)

    Article  ADS  Google Scholar 

  22. D.J. Burns, F.R. Simpson, J.W. McConkey, J. Phys. B At. Mol. Phys. 2, 309 (1969)

    Article  Google Scholar 

  23. P.N. Stantonn, R.M. John, J. Opt. Soc. Am. 59(3), 252–260 (1969)

    Article  ADS  Google Scholar 

  24. J.W. McConkey, I.D. Latimer, Proc. Phys. Soc. 86, 463 (1965)

    Article  ADS  Google Scholar 

  25. Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986)

    Article  ADS  Google Scholar 

  26. J. Országh, M. Danko, A. Ribar, Š Matejčík, Nucl. Instrum. Methods Phys. Res. B 279, 76 (2012)

    Article  ADS  Google Scholar 

  27. J. Országh, M. Danko, P. Čechvala, Š Matejčík, Astrophys. J. 841, 17 (2017)

    Article  ADS  Google Scholar 

  28. D. Bodewits, J. Országh, J. Noonan, M. Ďurian, Š Matejčík, Astrophys. J. 885, 167 (2019)

    Article  ADS  Google Scholar 

  29. M. Danko, J. Orszagh, M. Ďurian, J. Kočišek, M. Daxner, S. Zöttl, J.B. Maljković, J. Fedor, P. Scheier, S. Denifl, Š Matejčík, J. Phys. B At. Mol. Phys. 46, 045203 (2013)

    Article  ADS  Google Scholar 

  30. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  31. D.E. Shemansky, J.M. Ajello, I. Kanik, Astrophys. J. 452, 472 (1995)

    Article  ADS  Google Scholar 

  32. M.J. Brunger, P.J.O. Teubner, Phys. Rev. A (Coll Park) 41, 1413 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the scientific achievements of Professor Kurt Becker, on the occasion of his 70th birthday. This work has received support from Slovak Research and Development Agency under the projects nr. APVV-19-0386 and APVV-15-0580, Slovak grant agency VEGA under projects nr. 1/0489/21 and 1/0553/22. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.

Author information

Authors and Affiliations

Authors

Contributions

JB and BS are responsible for performing the experiment and processing the data; JB, JO and ŠM are responsible for data analysis, interpretation, and manuscript preparation.

Corresponding author

Correspondence to J. Országh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 413 KB)

Supplementary file2 (CSV 2964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaško, J., Országh, J., Stachová, B. et al. Spectral electron energy map of electron impact induced emission of nitrogen. Eur. Phys. J. D 77, 22 (2023). https://doi.org/10.1140/epjd/s10053-023-00602-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00602-y

Navigation