Skip to main content
Log in

Theory and molecular simulations of plasma sputtering, transport and deposition processes

  • Topical Review - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

This article has been updated

Abstract

The present review provides an overview of the basic theory of sputtering with recent models, focusing in particular on sputtered atom energy distribution functions. Molecular models such as Monte-Carlo, kinetic Monte-Carlo, and classical Molecular Dynamics simulations are presented due to their ability to describe the various processes involved in sputter deposition at the atomic and molecular scale as required. The sputter plasma, the sputtering mechanisms, the transport of sputtered material and its deposition leading to thin film growth can be addressed using these molecular simulations. In all cases, the underlying methodologies and some selected mechanisms are highlighted.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The paper is a review article and we have not generated any data.]

Change history

  • 16 April 2023

    Author biographies have been added to the article.

References

  1. L. Xie, PhD thesis, https://tel.archives-ouvertes.fr/tel-00933201/document

  2. P.J. Kelly, R.D. Arnell, Vacuum 56, 159 (2000). https://doi.org/10.1016/S0042-207X(99)00189-X

    Article  ADS  Google Scholar 

  3. K. Sarakinos, J. Alami, S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010). https://doi.org/10.1016/j.surfcoat.2009.11.013

    Article  Google Scholar 

  4. D. Depla, S. Mahieu, R. Hull, R.M. Osgood, J. Parisi, J.M. Warlimont (eds.), ), Reactive Sputter Deposition (Springer, Berlin Heidelberg, 2008)

    Google Scholar 

  5. A. Bogaerts, I. Kolev, and G. Buyle, In Reactive Sputter Deposition, ed. By D. Depla and S. Mahieu (Berlin: Springer-Verlag, 2008). p. 61

  6. A. Anders, J. Appl. Phys. 121, 171101 (2017). https://doi.org/10.1063/1.4978350

    Article  ADS  Google Scholar 

  7. C.H. Townes, Phys. Rev. 65, 319 (1944). https://doi.org/10.1103/PhysRev.65.319

    Article  ADS  Google Scholar 

  8. D.E. Harrison, Phys. Rev. 102, 1473 (1956). https://doi.org/10.1103/PhysRev.102.1473

    Article  ADS  Google Scholar 

  9. E.B. Henschke, Phys. Rev. 106, 737 (1957). https://doi.org/10.1103/PhysRev.106.737

    Article  ADS  Google Scholar 

  10. D.T. Goldman, A. Simon, Phys. Rev. 111, 383 (1958). https://doi.org/10.1103/PhysRev.111.383

    Article  ADS  Google Scholar 

  11. W. Brandt, R. Laubert, Nucl. Inst. Methods 47, 201 (1967). https://doi.org/10.1016/0029-554X(67)90431-4

    Article  ADS  Google Scholar 

  12. G. Chapman, J. Kelly, Aust. J. Phys. 20, 283 (1967). https://doi.org/10.1071/PH670283

    Article  ADS  Google Scholar 

  13. P.D. Davidse, Vacuum 17, 139–145 (1967). https://doi.org/10.1016/0042-207X(67)93142-9

    Article  ADS  Google Scholar 

  14. M. W. Thompson, 377–414 (1968). https://doi.org/10.1080/14786436808227358

  15. P. Sigmund, Phys. Rev. 184, 383 (1969). https://doi.org/10.1103/PhysRev.184.383

    Article  ADS  Google Scholar 

  16. P. Sigmund, Rev. Roum. Phys. 17, 969 (1972)

    Google Scholar 

  17. K. Kanaya, K. Hojou, K. Koga, K. Toki, Jpn. J. Appl. Phys. 12, 1297 (1973). https://doi.org/10.1143/JJAP.12.1297

    Article  ADS  Google Scholar 

  18. H. Oechsner, Appl. Phys. 8, 185–198 (1975). https://doi.org/10.1007/BF00896610

    Article  ADS  Google Scholar 

  19. H.F. Winters, Adv. Chem. 158, 1 (1976). https://doi.org/10.1021/ba-1976-0158.ch001

    Article  Google Scholar 

  20. R. Kelly, Radiat. Eff. 32, 91 (1977). https://doi.org/10.1080/00337577708237462

    Article  ADS  Google Scholar 

  21. G. Betz, Surf. Sci. 92, 283 (1980). https://doi.org/10.1016/0039-6028(80)90258-7

    Article  ADS  Google Scholar 

  22. P. Sigmund, J. Vac. Sci. Technol. 17, 396 (1980). https://doi.org/10.1116/1.570399

    Article  ADS  Google Scholar 

  23. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, Radiat. Eff. 57, 15 (1981). https://doi.org/10.1080/01422448008218676

    Article  ADS  Google Scholar 

  24. P. Sigmund, A. Oliva, G. Falcone, Nucl. Instrum. Methods Phys. Res. 194, 541 (1982). https://doi.org/10.1016/0029-554X(82)90578-X

    Article  ADS  Google Scholar 

  25. Z. Sroubek, Nucl. Instrum. Methods Phys. Res. 194, 533 (1982). https://doi.org/10.1016/0029-554X(82)90577-8

    Article  ADS  Google Scholar 

  26. Y. Yamamura, N. Matsunami, N. Itoh, Radiat. Eff. 68, 83 (1982). https://doi.org/10.1080/01422448208226913

    Article  ADS  Google Scholar 

  27. N.D. Lang, J.K. Nørskov, Phys. Scr. T6, 15 (1983). https://doi.org/10.1088/0031-8949/1983/T6/002

    Article  ADS  Google Scholar 

  28. R. Kelly, D.E. Harrison, Mater. Sci. Eng. 69, 449 (1985). https://doi.org/10.1016/0025-5416(85)90346-5

    Article  Google Scholar 

  29. J.B. Malherbe, S. Hofmann, J.M. Sanz, Appl. Surf. Sci. 27, 355–365 (1986). https://doi.org/10.1016/0169-4332(86)90139-X

    Article  ADS  Google Scholar 

  30. G. Falcone, F. Gullo, Phys. Lett. A 125, 432–434 (1987). https://doi.org/10.1016/0375-9601(87)90178-2

    Article  ADS  Google Scholar 

  31. G. Falcone, Surf. Sci. 187, 212 (1987). https://doi.org/10.1016/S0039-6028(87)80133-4

    Article  ADS  Google Scholar 

  32. P. Sigmund, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 1 (1987). https://doi.org/10.1016/0168-583X(87)90004-8

    Article  ADS  Google Scholar 

  33. G. Falcone, Sputtering transport theory: the mean energy. Phys. Rev. B 38, 6398–6401 (1988). https://doi.org/10.1103/PhysRevB.38.6398

    Article  ADS  Google Scholar 

  34. P.C. Zalm, Surf. Interface Anal. 11, 1 (1988). https://doi.org/10.1002/sia.740110102

    Article  Google Scholar 

  35. M.H. Shapiro, Nucl. Instrum. Methods Phys. Res. Sect. B 42, 290–292 (1989). https://doi.org/10.1016/0168-583X(89)90722-2

    Article  ADS  Google Scholar 

  36. G. Falcone, La Rivista del Nuovo Cimento della Societa Italiana di Fisica 13, 1 (1990)

    Article  ADS  Google Scholar 

  37. R.S. Mason, M. PichilingiJ, Phys. D: Appl. Phys. 27, 2363 (1994). https://doi.org/10.1088/0022-3727/27/11/017

    Article  ADS  Google Scholar 

  38. Z.L. Zhang, Nucl. Instrum. Methods Phys. Res. Sect. B 149, 272–284 (1999). https://doi.org/10.1016/S0168-583X(98)00634-X

    Article  ADS  Google Scholar 

  39. M. Stepanova, S.K. Dew, J. Vac. Sci. Technol. A 19, 2805–2816 (2001). https://doi.org/10.1116/1.1405515

    Article  Google Scholar 

  40. M. Stepanova, S.K. Dew, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 357–365 (2004). https://doi.org/10.1016/j.nimb.2003.09.013

    Article  ADS  Google Scholar 

  41. G.K. Wehner, D. Rosenberg, J. Appl. Phys. (2004). https://doi.org/10.1063/1.1735395

    Article  Google Scholar 

  42. G.N.V. Wyk, A.H. Lategan, Radiat. Eff. (2006). https://doi.org/10.1080/01422448208226917

    Article  Google Scholar 

  43. R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies. (Springer Science & Business Media, 2007).

  44. W.R. Grove, Philos. Trans. R. Soc. Lond. 142, 87–101 (1852). https://doi.org/10.1098/rstl.1852.0008

    Article  ADS  Google Scholar 

  45. Y. Yamamura, H. Tawara, At. Data Nucl. Data Tables 62, 149–253 (1996). https://doi.org/10.1006/adnd.1996.0005

    Article  ADS  Google Scholar 

  46. T. Ono, T. Kenmotsu, and T. Muramoto, In Reactive Sputter Deposition, ed. By D. Depla and S. Mahieu (Berlin: Springer-Verlag, 2008). p. 1

  47. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)

    Google Scholar 

  48. J. Lindhard, M. Scharff, Phys. Rev. 124, 128 (1961). https://doi.org/10.1103/PhysRev.124.128

    Article  ADS  Google Scholar 

  49. T. Mousel, W. Eckstein, H. Gnaser, Nucl. Instrum. Methods Phys. Res. B 152, 36–48 (1999). https://doi.org/10.1016/S0168-583X(98)00976-8

    Article  ADS  Google Scholar 

  50. Y. Yamamura, T. Takiguchi, M. Ishida, Radiat. Eff. Defects Solids 118, 237–261 (1991). https://doi.org/10.1016/S0168-583X(98)00976-8

    Article  ADS  Google Scholar 

  51. T. Kenmotsu, Y. Yamamura, T. Ono, T. Kawamura, J. Plasma Fusion Res. 80, 406 (2004). https://doi.org/10.1585/jspf.80.406

    Article  ADS  Google Scholar 

  52. K. Meyer, I.K. Schuller, C.M. Falco, J. Appl. Phys. 52, 5803–5805 (1981). https://doi.org/10.1063/1.329473

    Article  ADS  Google Scholar 

  53. A. Gras-Marti, J.A. Valles-Abarca, J. Appl. Phys. 54, 1071–1075 (1983). https://doi.org/10.1063/1.332113

    Article  ADS  Google Scholar 

  54. P. Brault, E. Neyts, Catal. Today 256, 3–12 (2015). https://doi.org/10.1016/j.cattod.2015.02.004

    Article  Google Scholar 

  55. S. Berg, T. Nyberg, H.-O. Blom, C. Nender, Handbook of Thin Film Process, Technology (Institute of Physics Publishing, Bristol, UK, 1998)

    Google Scholar 

  56. S. Berg, T. Nyberg, Thin Solid Films 476, 215 (2005). https://doi.org/10.1016/j.tsf.2004.10.051

    Article  ADS  Google Scholar 

  57. S. Berg, H.-O. Blom, T. Larsson, C. Nender, J. Vac. Sci Technol. A 5, 202 (1987). https://doi.org/10.1116/1.574104

    Article  Google Scholar 

  58. S. Berg, T. Larsson, C. Nender, H.-O. Blom, J. Appl. Phys. 63, 887 (1988). https://doi.org/10.1063/1.340030

    Article  ADS  Google Scholar 

  59. H. Bartzsch, P. Frach, Surf. Coat. Technol. 142–144, 192 (2001). https://doi.org/10.1016/S0257-8972(01)01087-8

    Article  Google Scholar 

  60. V.A. Koss, J.L. Vossen, J. Vac. Sci. Technol. A Vac. Surf. Films 8, 3791 (1990). https://doi.org/10.1116/1.576495

    Article  ADS  Google Scholar 

  61. H. Ofner, R. Zarwasch, E. Rille, H.K. Pulker, J. Vac. Sci. Technol. A Vac. Surf. Films 9, 2795 (1991). https://doi.org/10.1116/1.577202

    Article  ADS  Google Scholar 

  62. H. Sekiguchi, T. Murakami, A. Kanzawa, T. Imai, T. Honda, J. Vac. Sci. Technol. A Vac. Surf. Films 14, 2231 (1996). https://doi.org/10.1116/1.580051

    Article  ADS  Google Scholar 

  63. S. Berg, T. Nyberg, and T. Kubart, In Reactive Sputter Deposition, ed. By D. Depla and S. Mahieu (Berlin: Springer-Verlag, 2008) p. 131

  64. C. Costin, T.M. Minea, G. Popa, G. Gousset, Plasma Process. Polym. 4, S960 (2007). https://doi.org/10.1002/ppap.200732307

    Article  Google Scholar 

  65. S. Kadlec, Surf. Coat. Technol. 202, 895 (2007). https://doi.org/10.1016/j.surfcoat.2007.06.043

    Article  Google Scholar 

  66. I. Kolev, A. Bogaerts, J. Vac. Sci. Technol., A 27, 20 (2008). https://doi.org/10.1116/1.3013856

    Article  Google Scholar 

  67. A. Bogaerts, E. Bultinck, I. Kolev, L. Schwaederlé, K. Van Aeken, G. Buyle, D. Depla, J. Phys. D Appl. Phys. 42, 194018 (2009). https://doi.org/10.1088/0022-3727/42/19/194018

    Article  ADS  Google Scholar 

  68. B. Zheng, Y. Fu, K. Wang, T. Tran, T. Schuelke, Q.H. Fan, Phys. Plasmas 28, 014504 (2021). https://doi.org/10.1063/5.0029353

    Article  ADS  Google Scholar 

  69. C.H. Shon, J.K. Lee, Appl. Surf. Sci. 192, 258 (2002). https://doi.org/10.1016/S0169-4332(02)00030-2

    Article  ADS  Google Scholar 

  70. A. Bogaerts, M. van Straaten, R. Gijbels, J. Appl. Phys. 77, 1868 (1995). https://doi.org/10.1063/1.358887

    Article  ADS  Google Scholar 

  71. A. Bogaerts, R. Gijbels, R.J. Carman, Spectrochim. Acta Part B 53, 1679 (1998). https://doi.org/10.1016/S0584-8547(98)00201-8

    Article  ADS  Google Scholar 

  72. T.M. Minea, J. Bretagne, G. Gousset, IEEE Trans. Plasma Sci. 27, 94 (1999). https://doi.org/10.1109/27.763060

    Article  ADS  Google Scholar 

  73. E. Shidoji, N. Nakano, T. Makabe, Thin Solid Films 351, 37 (1999). https://doi.org/10.1016/S0040-6090(99)00151-0

    Article  ADS  Google Scholar 

  74. J. Bretagne, C. Boisse Laporte, G. Gousset, O. Leroy, T.M. Minea, D. Pagnon, L. de Poucques, M. Touzeau, Plasma Sour. Sci. Technol. 12, S33 (2003). https://doi.org/10.1088/0963-0252/12/4/318

    Article  Google Scholar 

  75. C. Costin, L. Marques, G. Popa, G. Gousset, Plasma Sour. Sci. Technol. 14, 168 (2005). https://doi.org/10.1088/0963-0252/14/1/018

    Article  ADS  Google Scholar 

  76. T. Yagisawa, T. Makabe, J. Vac. Sci. Technol. A 24, 908 (2006). https://doi.org/10.1116/1.2198866

    Article  Google Scholar 

  77. I. Kolev, A. Bogaerts, J. Appl. Phys. 104, 093301 (2008). https://doi.org/10.1063/1.2970166

    Article  ADS  Google Scholar 

  78. E. Bultinck, A. Bogaerts, New J. Phys. 11, 103010 (2009). https://doi.org/10.1088/1367-2630/11/10/103010

    Article  ADS  Google Scholar 

  79. E. Bultinck, S. Mahieu, D. Depla, A. Bogaerts, New J. Phys. 11, 023039 (2009). https://doi.org/10.1088/1367-2630/11/2/023039

    Article  ADS  Google Scholar 

  80. C. Costin, T.M. Minea, G. Popa, G. Gousset, J. Vac. Sci. Technol. A 28, 322 (2010). https://doi.org/10.1116/1.3332583

    Article  Google Scholar 

  81. E. Bultinck, A. Bogaerts, Plasma Sour. Sci. Technol. 20, 045013 (2011). https://doi.org/10.1088/0963-0252/20/4/045013

    Article  ADS  Google Scholar 

  82. G. Kawamura, Y. Tomita, A. Kirschner, J. Nucl. Mater. 415, S192 (2011). https://doi.org/10.1016/j.jnucmat.2010.09.057

    Article  ADS  Google Scholar 

  83. T. Kozák, A. Dagmar Pajdarová, Journal of Applied Physics 110, 103303 (2011) https://doi.org/10.1063/1.3656446

  84. A. Pflug, M. Siemers, C. Schwanke, B. Febty Kurnia, V. Sittinger, B. Szyszka, Materials Technology 26, 10 (2011). https://doi.org/10.1179/175355511X12941605982028

  85. M.A. Raadu, I. Axnäs, J.T. Gudmundsson, C. Huo, N. Brenning, Plasma Sourc. Sci. Technol. 20, 065007 (2011). https://doi.org/10.1088/0963-0252/20/6/065007

    Article  ADS  Google Scholar 

  86. D. Depla, W.P. Leroy, Thin Solid Films 520, 6337 (2012). https://doi.org/10.1016/j.tsf.2012.06.032

    Article  ADS  Google Scholar 

  87. F.J. Jimenez, S.K. Dew, J. Vac. Sci. Technol. A 30, 041302 (2012). https://doi.org/10.1116/1.4712534

    Article  Google Scholar 

  88. F. Boydens, W.P. Leroy, R. Persoons, D. Depla, Thin Solid Films 531, 32 (2013). https://doi.org/10.1016/j.tsf.2012.11.097

    Article  ADS  Google Scholar 

  89. N. Brenning, D. Lundin, T. Minea, C. Costin, C Vitelaru, J. Phys. D: Appl. Phys. 46, 084005 (2013) https://doi.org/10.1088/0022-3727/46/8/084005

  90. D. Depla, K. Strijckmans, R. De Gryse, Surf. Coat. Technol. 258, 1011 (2014). https://doi.org/10.1016/j.surfcoat.2014.07.038

    Article  Google Scholar 

  91. F.J. Jimenez, S.K. Dew, D.J. Field, J. Vac. Sci. Technol. A 32, 061301 (2014). https://doi.org/10.1116/1.4894270

    Article  Google Scholar 

  92. T.M. Minea, C. Costin, A. Revel, D. Lundin, L. Caillault, Surf. Coat. Technol. 255, 52–61 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.050

    Article  Google Scholar 

  93. K. Strijckmans, D. Depla, J. Phys. D Appl. Phys. 47, 235302 (2014). https://doi.org/10.1088/0022-3727/47/23/235302

    Article  ADS  Google Scholar 

  94. J.T. Gudmundsson, D. Lundin, G.D. Stancu, N. Brenning, T.M. Minea, Phys. Plasmas 22, 113508 (2015). https://doi.org/10.1063/1.4935402

    Article  ADS  Google Scholar 

  95. K. Strijckmans, D. Depla, Appl. Surf. Sci. 331, 185–192 (2015). https://doi.org/10.1016/j.apsusc.2015.01.058

    Article  ADS  Google Scholar 

  96. J.T. Gudmundsson, D. Lundin, N. Brenning, M.A. Raadu, C. Huo, T.M. Minea, Plasma Sour. Sci. Technol. 25, 065004 (2016). https://doi.org/10.1088/0963-0252/25/6/065004

    Article  ADS  Google Scholar 

  97. A. Revel, T. Minea, S. Tsikata, Phys. Plasmas 23, 100701 (2016). https://doi.org/10.1063/1.4964480

    Article  ADS  Google Scholar 

  98. N. Brenning, J.T. Gudmundsson, M.A. Raadu, T.J. Petty, T. Minea, D. Lundin, Plasma Sour. Sci. Technol. 26, 125003 (2017). https://doi.org/10.1088/1361-6595/aa959b

    Article  ADS  Google Scholar 

  99. C. Huo, D. Lundin, J.T. Gudmundsson, M.A. Raadu, J.W. Bradley, N. Brenning, J. Phys. D Appl. Phys. 50, 354003 (2017). https://doi.org/10.1088/1361-6463/aa7d35

    Article  Google Scholar 

  100. D. Lundin, J.T. Gudmundsson, N. Brenning, M.A. Raadu, T. Minea, J. Appl. Phys. 121, 171917 (2017). https://doi.org/10.1063/1.4977817

    Article  ADS  Google Scholar 

  101. F. Moens, S. Konstantinidis, D. Depla, Front. Phys. 5, 51 (2017). https://doi.org/10.3389/fphy.2017.00051

    Article  Google Scholar 

  102. K. Strijckmans, F. Moens, D. Depla, J. Appl. Phys. 121, 080901 (2017). https://doi.org/10.1063/1.4976717

    Article  ADS  Google Scholar 

  103. J. Held, A. Hecimovic, A. von Keudell, V.S. von der Gathen, Plasma Sour. Sci. Technol. 27, 105012 (2018). https://doi.org/10.1088/1361-6595/aae236

    Article  ADS  Google Scholar 

  104. T. Kozák, J. Lazar, Plasma Sour. Sci. Technol. 27, 115012 (2018). https://doi.org/10.1088/1361-6595/aaebdd

    Article  ADS  Google Scholar 

  105. A. Revel, T. Minea, C. Costin, Plasma Sour. Sci. Technol. 27, 105009 (2018). https://doi.org/10.1088/1361-6595/aadebe

    Article  ADS  Google Scholar 

  106. S. Cui, Z. Wu, H. Lin, S. Xiao, B. Zheng, L. Liu, X. An, R.K.Y. Fu, X. Tian, W. Tan, P.K. Chu, J. Appl. Phys. 125, 063302 (2019). https://doi.org/10.1063/1.5048554

    Article  ADS  Google Scholar 

  107. D. Lundin, T. Minea, J. T. Gudmundsson, High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications. (Elsevier, 2019).

  108. B. Zheng, Z. Wu, S. Cui, S. Xiao, L. Liu, H. Lin, R.K.Y. Fu, X. Tian, F. Pan, P.K. Chu, IEEE Trans. Plasma Sci. 47, 193 (2019). https://doi.org/10.1109/TPS.2018.2884475

    Article  ADS  Google Scholar 

  109. T. Minea, T. Kozák, C. Costin, J. T. Gudmundsson, D. Lundin, in High Power Impulse Magnetron Sputtering, ed. By D. Lundin, T. Minea, J. T. Gudmundsson, (Amsterdam, Elsevier, 2020) p. 159

  110. H. Eliasson, M. Rudolph, N. Brenning, H. Hajihoseini, M. Zanáška, M.J. Adriaans, M.A. Raadu, T.M. Minea, Plasma Sour. Sci. Technol. 30, 115017 (2021). https://doi.org/10.1088/1361-6595/ac352c

    Article  ADS  Google Scholar 

  111. M. Rudolph, H. Hajihoseini, M.A. Raadu, J.T. Gudmundsson, N. Brenning, T.M. Minea, A. Anders, D. Lundin, J. Appl. Phys. 129, 033303 (2021). https://doi.org/10.1063/5.0036902

    Article  ADS  Google Scholar 

  112. M. Rudolph, H. Hajihoseini, M.A. Raadu, J.T. Gudmundsson, N. Brenning, T.M. Minea, A. Anders, D. Lundin, Plasma Sour. Sci. Technol. 30, 045011 (2021). https://doi.org/10.1063/5.0036902

    Article  ADS  Google Scholar 

  113. T.E. Sheridan, M.J. Goeckner, J. Goree, J. Vac. Sci. Technol. A 8, 30 (1990). https://doi.org/10.1116/1.577093

    Article  Google Scholar 

  114. T.E. Sheridan, M.J. Goeckner, J. Goree, J. Vac. Sci. Technol. A 8, 1623 (1990). https://doi.org/10.1116/1.576776

    Article  Google Scholar 

  115. J.E. Miranda, M.J. Goeckner, J. Goree, T.E. Sheridan, J. Vac. Sci. Technol. A 8, 1627 (1990). https://doi.org/10.1116/1.576777

    Article  Google Scholar 

  116. M.J. Goeckner, J. Goree, T.E. Sheridan, IEEE Trans. Plasma Sci. 19, 301 (1991). https://doi.org/10.1109/27.106828

    Article  ADS  Google Scholar 

  117. J. Goree, T.E. Sheridan, Appl. Phys. Lett. 59, 1052 (1991). https://doi.org/10.1063/1.106342

    Article  ADS  Google Scholar 

  118. J. Li, Q. Chen, Z. Li, J. Phys. D: Appl. Phys. 28, 681 (1995). https://doi.org/10.1088/0022-3727/28/4/010

    Article  ADS  Google Scholar 

  119. J. Li, Q. Chen, Z. Li, J. Phys. D: Appl. Phys. 28, 1121 (1995). https://doi.org/10.1088/0022-3727/28/6/014

    Article  ADS  Google Scholar 

  120. J. Li, Q. Chen, W. Zhang, Z. Li, J.J. Pan, J. Phys. D: Appl. Phys. 29, 1624 (1996). https://doi.org/10.1088/0022-3727/29/6/031

    Article  ADS  Google Scholar 

  121. C. Heise, K. Lemke, M. Kock, Contrib. Plasma Phys. 37, 431 (1997). https://doi.org/10.1002/ctpp.2150370505

    Article  ADS  Google Scholar 

  122. Q.H. Fan, J.J. Gracio, L.Q. Zhou, J. Appl. Phys. 95, 6017 (2004). https://doi.org/10.1063/1.1715133

    Article  ADS  Google Scholar 

  123. S. Ido, K. Nakamura, Jpn. J. Appl. Phys. 32, 5698 (1993). https://doi.org/10.1143/JJAP.32.5698

    Article  ADS  Google Scholar 

  124. S. Ido, K. Nakamura, Vacuum 47, 1035 (1996). https://doi.org/10.1016/0042-207X(96)00119-4

    Article  ADS  Google Scholar 

  125. S. Ido, K. Nakamura, Jpn. J. Appl. Phys. 35, 2302 (1996). https://doi.org/10.1143/JJAP.35.2302

    Article  ADS  Google Scholar 

  126. M. Kashiwagi, S. Ido, Vacuum 53, 33 (1999). https://doi.org/10.1016/S0042-207X(98)00417-5

    Article  ADS  Google Scholar 

  127. S. Ido, M. Kashiwagi, M. Takahashi, Jpn. J. Appl. Phys. 38, 4450 (1999). https://doi.org/10.1143/JJAP.38.4450

    Article  ADS  Google Scholar 

  128. S. Ido, T. Suzuki, M. Kashiwagi, Jpn. J. Appl. Phys. 37, 965 (1998). https://doi.org/10.1143/JJAP.37.965

    Article  ADS  Google Scholar 

  129. E. Shidoji, M. Nemoto, T. Nomura, Y. Yoshikawa, Jpn. J. Appl. Phys. 33, 4281 (1994). https://doi.org/10.1143/JJAP.33.4281

    Article  ADS  Google Scholar 

  130. E. Shidoji, M. Nemoto, T. Nomura, J. Vac. Sci. Technol. A 18, 2858 (2000). https://doi.org/10.1116/1.1312376

    Article  Google Scholar 

  131. A. Lopp, C. Braatz, M. Geisler, H. Claus, and J. Trube, 45th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, 170, (2002) , ISSN 0737–5921

  132. Q.H. Fan, L.Q. Zhou, J.J. Gracio, J. Phys. D: Appl. Phys 36, 244 (2003). https://doi.org/10.1088/0022-3727/36/3/305

    Article  ADS  Google Scholar 

  133. T. Kubart, R. Novak, J. Valter, Czech. J. Phys. 54, 1027 (2004)

    Article  Google Scholar 

  134. G. Buyle, D. Depla, J. Haemers, W. De Bosscher, R. De Gryse, in SVC 48th Annual Technical Conference Proceedings (Denver, Colorado, 2005)

  135. E.W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964)

    Google Scholar 

  136. S.N. Nahar, J.M. Wadehra, Phys. Rev. A 35, 2051 (1987). https://doi.org/10.1103/PhysRevA.35.2051

    Article  ADS  Google Scholar 

  137. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulations (Adam Hilger, Bristol, 1991)

    Book  Google Scholar 

  138. I. Kolev, A. Bogaerts, Plasma Process. Polym. 3, 127 (2006). https://doi.org/10.1002/ppap.200500118

    Article  Google Scholar 

  139. G.A. Bird, Molecular gas dynamics and the direct simulation of gas flows, Oxf. Eng. Sci. Ser. (1994).

  140. M. Turowski, M. Jupé, T. Melzig, P. Moskovkin, A. Daniel, A. Pflug, S. Lucas, D. Ristau, Thin Solid Films 592, 240 (2015). https://doi.org/10.1016/j.tsf.2015.04.015

    Article  ADS  Google Scholar 

  141. J.N. Brooks, D.N. Ruzic, J. Nucl. Mater. 176, 278 (1990). https://doi.org/10.1016/0022-3115(90)90060-Z

    Article  ADS  Google Scholar 

  142. J.P. Biersack, W. Eckstein, Appl. Phys. A 34, 73 (1984). https://doi.org/10.1007/BF00614759

    Article  ADS  Google Scholar 

  143. W. Möller, W. Eckstein, Nucl. Instrum. Methods Phys. Res. Sect. B 2, 814 (1984). https://doi.org/10.1016/0168-583X(84)90321-5

    Article  ADS  Google Scholar 

  144. W. Eckstein, J.P. Biersack, Appl. Phys. A 37, 95 (1985). https://doi.org/10.1007/BF00618859

    Article  ADS  Google Scholar 

  145. J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 21 (1987). https://doi.org/10.1016/0168-583X(87)90005-X

    Article  ADS  Google Scholar 

  146. J.P. Biersack, S. Berg, C. Nender, Nucl. Instrum. Methods Phys. Res., Sect. B 59–60, 21 (1991). https://doi.org/10.1016/0168-583X(91)95167-C

    Article  ADS  Google Scholar 

  147. I. Strašík, M. Pavlovič, Radiat. Eff. Defects Solids 164, 470–476 (2009). https://doi.org/10.1080/10420150902949910

    Article  ADS  Google Scholar 

  148. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013). https://doi.org/10.1016/j.nimb.2013.05.008

    Article  ADS  Google Scholar 

  149. V.I. Shulga, Appl. Surf. Sci. 439, 456–461 (2018). https://doi.org/10.1016/j.apsusc.2018.01.039

    Article  ADS  Google Scholar 

  150. D.N. Ruzic, Nucl. Instrum. Methods Phys. Res. Sect. B 47, 118–125 (1990). https://doi.org/10.1016/0168-583X(90)90019-Q

    Article  ADS  Google Scholar 

  151. Y. Yamamura, Y. Mizuno, H. Kimura, Nucl. Instrum. Methods Phys. Res. Sect. B 13, 393 (1986). https://doi.org/10.1016/0168-583X(86)90535-5

    Article  ADS  Google Scholar 

  152. Y. Yamamura, C. Mössner, H. Oechsner, Radiat. Eff. 103, 25 (1987). https://doi.org/10.1080/00337578708221239

    Article  ADS  Google Scholar 

  153. Y. Yasunori, T. Wataru, Nucl. Instrum. Methods Phys. Res. Sect. B 29, 461 (1987). https://doi.org/10.1016/0168-583X(87)90057-7

    Article  ADS  Google Scholar 

  154. Y. Yamamura, K. Muraoka, Nucl. Instrum. Methods Phys. Res. Sect. B 42, 175 (1989). https://doi.org/10.1016/0168-583X(89)90704-0

    Article  ADS  Google Scholar 

  155. Yamamura, Y., Tawara, Atomic Data and Nuclear Data Tables 62, 149 (1996) https://doi.org/10.1006/adnd.1996.0005

  156. Z. Li, T. Kenmotsu, T. Kawamura, T. Ono, Y. Yamamura, Nucl. Instrum. Methods Phys. Res. Sect. B 153, 331 (1999). https://doi.org/10.1016/S0168-583X(98)01010-6

    Article  ADS  Google Scholar 

  157. T. Kenmotsu, Y. Yamamura, T. Muramoto, N. Hirotani, Nucl. Instrum. Methods Phys. Res. Sect. B 228, 369 (2005). https://doi.org/10.1016/j.nimb.2004.10.072

    Article  ADS  Google Scholar 

  158. T. Motohiro, J. Vac. Sci. Technol A 4, 189 (1986). https://doi.org/10.1116/1.573469

    Article  Google Scholar 

  159. J. Emmerlich, S. Mráz, R. Snyders, K. Jiang, J.M. Schneider, Vacuum 82, 867 (2008). https://doi.org/10.1016/j.vacuum.2007.10.011

    Article  ADS  Google Scholar 

  160. Y. Yamamura, M. Ishida, J. Vac. Sci. Technol. A 13, 101 (1995). https://doi.org/10.1116/1.579874

    Article  Google Scholar 

  161. S. Mahieu, G. Buyle, D. Depla, S. Heirwegh, P. Ghekiere, R. De Gryse, Nucl. Instrum. Methods Phys. Res., Sect. B 243, 313 (2006). https://doi.org/10.1016/j.nimb.2005.09.018

    Article  ADS  Google Scholar 

  162. V. Abhilash, R. Balu, S. Balaji, S. Senthil Nathan, S. Mohan, Comput. Mater. Sci. 30, 523 (2004). https://doi.org/10.1016/j.commatsci.2004.02.046

    Article  Google Scholar 

  163. K.V. Aeken, S. Mahieu, D. Depla, J. Phys. D: Appl. Phys. 41, 205307 (2008). https://doi.org/10.1088/0022-3727/41/20/205307

    Article  ADS  Google Scholar 

  164. S. Kadlec, C. Quaeyhaegens, G. Knuyt, L. Stals, Surf. Coat. Technol. 97, 633 (1997). https://doi.org/10.1016/S0257-8972(97)00375-7

    Article  Google Scholar 

  165. K. Macàk, P. Macàk, U. Helmersson, Comput. Phys. Commun. 120, 238 (1999). https://doi.org/10.1016/S0010-4655(99)00245-3

    Article  ADS  Google Scholar 

  166. T. Motohiro, Y. Taga, Thin Solid Films 112, 161 (1984). https://doi.org/10.1016/0040-6090(84)90493-0

    Article  ADS  Google Scholar 

  167. A.M. Myers, J.R. Doyle, J.R. Abelson, D.N. Ruzic, J. Vac. Sci. Technol. A 9, 614 (1991). https://doi.org/10.1116/1.577375

    Article  Google Scholar 

  168. A.M. Myers, J.R. Doyle, D.N. Ruzic, J. Appl. Phys. 72, 3064 (1992). https://doi.org/10.1063/1.351464

    Article  ADS  Google Scholar 

  169. P.K. Petrov, V.A. Volpyas, R.A. Chakalov, Vacuum 52, 427 (1999). https://doi.org/10.1016/S0042-207X(98)00326-1

    Article  ADS  Google Scholar 

  170. G.M. Turner, I.S. Falconer, B.W. James, D.R. McKenzie, J. Appl. Phys. 65, 3671 (1989). https://doi.org/10.1063/1.342593

    Article  ADS  Google Scholar 

  171. O. Yamazaki, K. Iyanagi, S. Takagi, K. Nanbu, Jpn. J. Appl. Phys. 41, 1230 (2002). https://doi.org/10.1143/JJAP.41.1230

    Article  ADS  Google Scholar 

  172. K. Bobzin, R.P. Brinkmann, T. Mussenbrock, N. Bagcivan, R.H. Brugnara, M. Schäfer, J. Trieschman, Surf. Coat. Technol. 237, 176 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.018

    Article  Google Scholar 

  173. R. Elsing, Surf. Coat. Technol. 49, 132 (1991). https://doi.org/10.1016/0257-8972(91)90044-W

    Article  Google Scholar 

  174. T. Heberlein, G. Krautheim, W. Wuttke, Vacuum 42, 47 (1991). https://doi.org/10.1016/0042-207X(91)90076-U

    Article  ADS  Google Scholar 

  175. A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions (Springer, 2012)

    Book  MATH  Google Scholar 

  176. S. Lucas, P. Moskovkin, Thin Solid Films 518, 5355 (2010). https://doi.org/10.1016/j.tsf.2010.04.064

    Article  ADS  Google Scholar 

  177. N. Cheimarios, D. To, G. Kokkoris, G. Memos, A.G. Boudouvis, Front. Phys. 9, 631918 (2021). https://doi.org/10.3389/fphy.2021.631918

    Article  Google Scholar 

  178. G.H. Gilmer, H. Huang, C. Roland, Comput. Mater. Sci. 12, 354 (1998). https://doi.org/10.1016/S0927-0256(98)00022-6

    Article  Google Scholar 

  179. G. H. Gilmer, H. Huang, T. D de la Rubia, J. Dalla Torre, F. Baumann, Thin Solid Films 365, 189 (2000). https://doi.org/10.1016/S0040-6090(99)01057-3

  180. H.N.G. Wadley, X. Zhou, R.A. Johnson, M. Neurock, Prog. Mater. Sci. 46, 329 (2001). https://doi.org/10.1016/S0079-6425(00)00009-8

    Article  Google Scholar 

  181. Y. Wang, in 31st Computers and Information in Engineering Conference (American Society of Mechanical Engineers Digital Collection, 2012) p; 241 https://doi.org/10.1115/DETC2011-48570

  182. L.A. Zepeda-Ruiz, G.H. Gilmer, in Handbook of Crystal Growth (Second Edition) ed By T. Nishinaga, (Elsevier, 2015) p. 445 https://doi.org/10.1016/B978-0-444-56369-9.00010-1.

  183. L.A. Zepeda-Ruiz, G.H. Gilmer, C.C. Walton, A.V. Hamza, E. Chason, J. Cryst. Growth 312, 1183–1187 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.035

    Article  ADS  Google Scholar 

  184. J. Cho, S.G. Terry, R. LeSar, C.G. Levi, Mater. Sci. Eng. A 391, 390–401 (2005). https://doi.org/10.1016/j.msea.2004.09.015

    Article  Google Scholar 

  185. J. Dalla Torre, G. H. Gilmer, D. L. Windt, R. Kalyanaraman, F. H. Baumann, P. L. OSullivan, J. Sapjeta, T. Dı́azdelaRubia, M. Djafari Rouhani, J. Appl. Phys. 94, 263–271 (2003). https://doi.org/10.1063/1.1579112

  186. J. Dervaux, P.A. Cormier, P. Moskovkin, O. Douheret, S. Konstantinidis, R. Lazzaroni, S. Lucas, R. Snyders, Thin Solid Films 636, 644–657 (2017). https://doi.org/10.1016/j.tsf.2017.06.006

    Article  ADS  Google Scholar 

  187. F. Elsholz, E. Schöll, A. Rosenfeld, Phys. Status Solidi (b) 244, 3639 (2007). https://doi.org/10.1002/pssb.200743257

    Article  ADS  Google Scholar 

  188. V. Godinho, P. Moskovkin, R. Álvarez, J. Caballero-Hernández, R. Schierholz, B. Bera, J. Demarche, A. Palmero, A. Fernández, S. Lucas, Nanotechnology 25, 355705 (2014). https://doi.org/10.1088/0957-4484/25/35/355705

    Article  Google Scholar 

  189. L. Jablonka, P. Moskovkin, Z. Zhang, S.-L. Zhang, S. Lucas, T. Kubart, J. Phys. D Appl. Phys. 52, 365202 (2019). https://doi.org/10.1088/1361-6463/ab28e2

    Article  Google Scholar 

  190. Z. Liu, L. Yu, K.-L. Yao, X.-B. Jing, X. Li, X.-Z. Sun, J. Phys. D Appl. Phys. 38, 4202 (2005). https://doi.org/10.1088/0022-3727/38/23/010

    Article  ADS  Google Scholar 

  191. F. Nita, C. Mastail, G. Abadias, Phys. Rev. B 93, 064107 (2016). https://doi.org/10.1103/PhysRevB.93.064107

    Article  ADS  Google Scholar 

  192. R. Mareus, C. Mastail, F. Anğay, N. Brunetière, G. Abadias, Surf. Coat. Technol. 399, 126130 (2020). https://doi.org/10.1016/j.surfcoat.2020.126130

    Article  Google Scholar 

  193. L. Rosenthal, A. Filinov, M. Bonitz, V. Zaporojtchenko, F. Faupel, Contrib. Plasma Phys. 51, 971–980 (2011). https://doi.org/10.1002/ctpp.201100034

    Article  ADS  Google Scholar 

  194. R. Tonneau, P. Moskovkin, J. Muller, T. Melzig, E. Haye, S. Konstantinidis, A. Pflug, S. Lucas, J. Phys. D: Appl. Phys. 54, 155203 (2021). https://doi.org/10.1088/1361-6463/abd72a

    Article  ADS  Google Scholar 

  195. D. Graves, P. Brault, J. Phys. D 42, 194011 (2009). https://doi.org/10.1088/0022-3727/42/19/194011

    Article  ADS  Google Scholar 

  196. A. Omeltchenko, A. Nakano, K. Tsukura, R.K. Kalia, P. Vashishta, in Advances in Metal and Semiconductors Clusters, vol. 4 (JAI Press, Greenwich, CT, 1998), p.263

    Google Scholar 

  197. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  198. J.M. Haile, Molecular Dynamics Simulations (Wiley, New York, 1992)

    Google Scholar 

  199. D.C. Rapaport, The Art of Molecular Dynamics Simulations (Cambridge: Cambridge University Press 1995)

  200. D. Frenkel and B. Smit Understanding Molecular Simulation (Orlando, FL: Academic Press 2001)

  201. E. Neyts, P. Brault, Plasma Process. Polym. 14, 1600145 (2017). https://doi.org/10.1002/ppap.201600145

    Article  Google Scholar 

  202. L. Xie, P. Brault, J.-M. Bauchire, A.-L. Thomann, L. Bedra, J. Phys. D: Appl. Phys. 47, 224004 (2014). https://doi.org/10.1088/0022-3727/47/22/224004

    Article  ADS  Google Scholar 

  203. A. Wucher, B.J. Garrison, Surf. Sci. 260, 257 (1992). https://doi.org/10.1016/0039-6028(92)90040-D

    Article  ADS  Google Scholar 

  204. B.J. Thijsse, T.P.C. Klaver, E.F.C. Haddeman, Appl. Surf. Sci. 231–232, 29–38 (2004). https://doi.org/10.1016/j.apsusc.2004.03.207

    Article  ADS  Google Scholar 

  205. D.E. Harrison, J. Appl. Phys. 52, 1499–1508 (1981). https://doi.org/10.1063/1.329788

    Article  ADS  Google Scholar 

  206. O.J. Tucker, D.S. Ivanov, L.V. Zhigilei, R.E. Johnson, E.M. Bringa, Nucl. Instrum. Methods Phys. Res. Sect. B 228, 163–169 (2005). https://doi.org/10.1016/j.nimb.2004.10.040

    Article  ADS  Google Scholar 

  207. L. Chen, A. Kaiser, M. Probst, S. Shermukhamedov, Nucl. Fusion 61, 016031 (2020). https://doi.org/10.1088/1741-4326/abc9f4

    Article  ADS  Google Scholar 

  208. G. Betz, R. Kirchner, W. Husinsky, F. Rüdenauer, H.M. Urbassek, Radiat. Effects Defects Solids Null 130, 251–266 (1994). https://doi.org/10.1080/10420159408219788

    Article  ADS  Google Scholar 

  209. Z. Insepov, I. Yamada, Nucl. Instrum. Methods Phys. Res. Sect. B 99, 248–252 (1995). https://doi.org/10.1016/0168-583X(95)00322-3

    Article  ADS  Google Scholar 

  210. G. Betz, W. Husinsky, Nucl. Instrum. Methods Phys. Res. Sect. B 102, 281 (1995). https://doi.org/10.1016/0168-583X(95)80155-F

    Article  ADS  Google Scholar 

  211. H. Gades, H.M. Urbassek, Nucl. Instrum. Methods Phys. Res. Sect. B 102, 261 (1995). https://doi.org/10.1016/0168-583X(95)80152-C

    Article  ADS  Google Scholar 

  212. J.E. Rubio, L.A. Marqués, M. Jaraíz, L.A. Bailón, J. Barbolla, Nucl. Instrum. Methods Phys. Res., Sect. B 102, 301 (1995). https://doi.org/10.1016/0168-583X(95)80157-H

    Article  ADS  Google Scholar 

  213. R.E. Johnson, M. Liu, J. Chem. Phys. 104, 6041 (1996). https://doi.org/10.1063/1.471340

    Article  ADS  Google Scholar 

  214. L.A. Marqués, J.E. Rubio, M. Jaraı́z, L.A. Bailón, J.J. Barbolla, J. Appl. Phys. 81, 1488 (1997). https://doi.org/10.1063/1.363914

  215. H.M. Urbassek, Nucl. Instrum. Methods Phys. Res. Sect. B 122, 427 (1997). https://doi.org/10.1016/S0168-583X(96)00681-7

    Article  ADS  Google Scholar 

  216. N.A. Kubota, D.J. Economou, S.J. Plimpton, J. Appl. Phys. 83, 4055 (1998). https://doi.org/10.1063/1.367225

    Article  ADS  Google Scholar 

  217. V.N. Samoilov, A.E. Tatur, N.A. Kovaleva, A.E. Kozhanov, Nucl. Instrum. Methods Phys. Res. Sect. B 153, 319 (1999). https://doi.org/10.1016/S0168-583X(99)00216-5

    Article  ADS  Google Scholar 

  218. E.M. Bringa, R.E. Johnson, M. Jakas, Phys. Rev. B 60, 15107 (1999). https://doi.org/10.1103/PhysRevB.60.15107

    Article  ADS  Google Scholar 

  219. E.E. Zhurkin, A.S. Kolesnikov, Nucl. Instrum. Methods Phys. Res., Sect. B 193, 822 (2002). https://doi.org/10.1016/S0168-583X(02)00911-4

    Article  ADS  Google Scholar 

  220. A.V. Krasheninnikov, K. Nordlund, E. Salonen, J. Keinonen, C.H. Wu, Comput. Mater. Sci. 25, 427 (2002). https://doi.org/10.1016/S0927-0256(02)00318-X

    Article  Google Scholar 

  221. E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu, J. Nucl. Mater. 313–316, 404 (2003). https://doi.org/10.1016/S0022-3115(02)01397-1

    Article  ADS  Google Scholar 

  222. M.H. Shapiro, P. Lu, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 326 (2004). https://doi.org/10.1016/j.nimb.2003.08.036

    Article  ADS  Google Scholar 

  223. C. Anders, H.M. Urbassek, R.E. Johnson, Phys. Rev. B 70, 155404 (2004). https://doi.org/10.1103/PhysRevB.70.155404

    Article  ADS  Google Scholar 

  224. K.O.E. Henriksson, K. Nordlund, J. Keinonen, Phys. Rev. B 71, 014117 (2005). https://doi.org/10.1103/PhysRevB.71.014117

    Article  ADS  Google Scholar 

  225. E. Despiau-Pujo, P. Chabert, D.B. Graves, J. Vac. Sci. Technol. A 26, 274 (2008). https://doi.org/10.1116/1.2836408

    Article  Google Scholar 

  226. AYu. Nikiforov, High Energy Chem. 42, 235 (2008). https://doi.org/10.1134/S0018143908030090

    Article  Google Scholar 

  227. B. Weidtmann, A. Duvenbeck, A. Wucher, Appl. Surf. Sci. 255, 813 (2008). https://doi.org/10.1016/j.apsusc.2008.05.062

    Article  ADS  Google Scholar 

  228. A. Ito, Y. Wang, S. Irle, K. Morokuma, H. Nakamura, J. Nucl. Mater. 390–391, 183 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.163

    Article  ADS  Google Scholar 

  229. A.-P. Prskalo, S. Schmauder, C. Ziebert, J. Ye, S. Ulrich, Surf. Coat. Technol. 204, 2081 (2010). https://doi.org/10.1016/j.surfcoat.2009.09.043

    Article  Google Scholar 

  230. A. Duvenbeck, B. Weidtmann, A. Wucher, J. Phys. Chem. C 114, 5715 (2010). https://doi.org/10.1021/jp905923w

    Article  Google Scholar 

  231. O.A. Restrepo, A. Delcorte, J. Phys. Chem. C 115, 12751 (2011). https://doi.org/10.1021/jp201183a

    Article  Google Scholar 

  232. A. Duvenbeck, S. Hanke, B. Weidtmann, A. Wucher, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1661 (2011). https://doi.org/10.1016/j.nimb.2010.11.082

    Article  ADS  Google Scholar 

  233. C. Yan, Q.Y. Zhang, AIP Adv. 2, 032107 (2012). https://doi.org/10.1063/1.4738951

    Article  ADS  Google Scholar 

  234. F. Sefta, N. Juslin, K.D. Hammond, B.D. Wirth, J. Nucl. Mater. 438, S493 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.101

    Article  ADS  Google Scholar 

  235. V. Cristaudo, C. Poleunis, B. Czerwinski, A. Delcorte, Surf. Interface Anal. 46, 79 (2014). https://doi.org/10.1002/sia.5424

    Article  Google Scholar 

  236. T. Aoki, J. Comput. Electron. 13, 108 (2014). https://doi.org/10.1007/s10825-013-0504-5

    Article  Google Scholar 

  237. M.L. Nietiadi, L. Sandoval, H.M. Urbassek, W. Möller, Phys. Rev. B 90, 045417 (2014). https://doi.org/10.1103/PhysRevB.90.045417

    Article  ADS  Google Scholar 

  238. L. Pentecoste, P. Brault, A.-L. Thomann, P. Desgardin, T. Lecas, T. Belhabib, M.-F. Barthe, T. Sauvage, J. Nucl. Mat. 470, 44 (2016). https://doi.org/10.1016/j.jnucmat.2015.12.017

    Article  ADS  Google Scholar 

  239. P. Brault, S. Chuon, J.-M. Bauchire, Front. Phys. 4, 20 (2016). https://doi.org/10.3389/fphy.2016.00020

    Article  Google Scholar 

  240. L. Pentecoste, A.-L. Thomann, P. Brault, T. Lecas, P. Desgardin, T. Sauvage, M.-F. Barthe, Acta Mater. 141, 47 (2017). https://doi.org/10.1016/j.actamat.2017.08.065

    Article  ADS  Google Scholar 

  241. A. Delcorte, K. Moshkunov, M. Debongnie, J. Vac. Sci. Technol. B 36, 03F109 (2018). https://doi.org/10.1116/1.5012981

    Article  Google Scholar 

  242. A.A. Sycheva, E.N. Voronina, T.V. Rakhimova, J. Surf. Investig. 12, 1270 (2018). https://doi.org/10.1134/S1027451019010191

    Article  Google Scholar 

  243. J. Jussila, F. Granberg, K. Nordlund, Nucl. Mater. Energy 17, 113–122 (2018). https://doi.org/10.1016/j.nme.2018.08.002

    Article  Google Scholar 

  244. A.A. Sycheva, E.N. Voronina, T.V. Rakhimova, A.T. Rakhimov, Appl. Surf. Sci. 475, 1021 (2019). https://doi.org/10.1016/j.apsusc.2019.01.078

    Article  ADS  Google Scholar 

  245. T. Gergs, T. Mussenbrock, J.A. Trieschmann, J. Appl. Phys. 132, 063302 (2022). https://doi.org/10.1063/5.0098040

    Article  ADS  Google Scholar 

  246. N. Lümmen, T. Kraska, Nanotechnology 15, 525 (2004). https://doi.org/10.1088/0957-4484/15/5/021

    Article  ADS  Google Scholar 

  247. N. Lümmen, T. Kraska, Nanotechnology 16, 2870 (2005). https://doi.org/10.1088/0957-4484/16/12/023

    Article  ADS  Google Scholar 

  248. N. Lümmen, T. Kraska, Phys. Rev. B 71, 205403 (2005). https://doi.org/10.1103/PhysRevB.71.205403

    Article  ADS  Google Scholar 

  249. N. Lümmen, T. Kraska, Eur. Phys. J. D 41, 247 (2007). https://doi.org/10.1140/epjd/e2006-00210-4

    Article  ADS  Google Scholar 

  250. P. Brault, Front. Phys. 6, 59 (2018). https://doi.org/10.3389/fphy.2018.00059

    Article  Google Scholar 

  251. P. Brault, W. Chamorro-Coral, S. Chuon, A. Caillard, J.-M. Bauchire, S. Baranton, C. Coutanceau, E. Neyts, Front. Chem. Sci. Eng. 13, 324 (2019). https://doi.org/10.1007/s11705-019-1792-5

    Article  Google Scholar 

  252. E. Goudeli, Curr. Opin. Chem. Eng. 23, 155 (2019). https://doi.org/10.1016/j.coche.2019.04.001

    Article  Google Scholar 

  253. P. Grammatikopoulos, Curr. Opin. Chem. Eng. 23, 164 (2019). https://doi.org/10.1016/j.coche.2019.04.004

    Article  Google Scholar 

  254. J.-G. Mattei, P. Grammatikopoulos, J. Zhao, V. Singh, J. Vernieres, S. Steinhauer, A. Porkovich, E. Danielson, K. Nordlund, F. Djurabekova, M. Sowwan, Chem. Mater. 31, 2151 (2019). https://doi.org/10.1021/acs.chemmater.9b00129

    Article  Google Scholar 

  255. P. Brault, Energies 13, 3584 (2020). https://doi.org/10.3390/en13143584

    Article  Google Scholar 

  256. B.S.R. Kouamé, S. Baranton, P. Brault, C. Canaff, W. Chamorro-Coral, A. Caillard, K. De Oliveira Vigier, C. Coutanceau, Electrochimica Acta 329, 135161 (2020). https://doi.org/10.1016/j.electacta.2019.135161

  257. K.-H. Müller, Surf. Sci. 184, L375 (1987). https://doi.org/10.1016/S0039-6028(87)80265-0

    Article  Google Scholar 

  258. K.H. Müller, J. Appl. Phys. 62, 1796 (1987). https://doi.org/10.1063/1.339559

    Article  ADS  Google Scholar 

  259. K.H. Müller, J Vac. Sci. Technol. A 6, 1690 (1988). https://doi.org/10.1116/1.575309

    Article  Google Scholar 

  260. I. Kwon, R. Biswas, G.S. Grest, C.M. Soukoulis, Phys. Rev. B 41, 3678 (1990). https://doi.org/10.1103/PhysRevB.41.3678

    Article  ADS  Google Scholar 

  261. C.M. Gilmore, J.A. Sprague, Phys. Rev. B 44, 8950 (1991). https://doi.org/10.1103/PhysRevB.44.8950

    Article  ADS  Google Scholar 

  262. C. C. Fang, F. Jones, V. Prasad, MRS Online Proceedings Library (OPL) , Volume 280. In: Symposium B—Evolution of Surface and Thin Film Microstructure, 463 (1992). https://doi.org/10.1557/PROC-280-463

  263. C.C. Fang, V. Prasad, F. Jones, J. Vac. Sci. Technol. A 11, 2778 (1993). https://doi.org/10.1116/1.578641

    Article  Google Scholar 

  264. C.C. Fang, F. Jones, V. Prasad, J. Appl. Phys. 74, 4472 (1993). https://doi.org/10.1063/1.354363

    Article  ADS  Google Scholar 

  265. C.C. Fang, F. Jones, R.R. Kola, G.K. Celler, V. Prasad, J. Vac. Sci. Technol. B 11, 2947 (1993). https://doi.org/10.1116/1.586566

    Article  Google Scholar 

  266. R.W. Smith, F. Ying, D.J. Srolovitz, MRS Online Proc. Library 403, 39 (1995). https://doi.org/10.1557/PROC-403-39

    Article  Google Scholar 

  267. N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, Phys. Rev. B 53, 4117 (1996). https://doi.org/10.1103/PhysRevB.53.4117

    Article  ADS  Google Scholar 

  268. F. Ying, R.W. Smith, D.J. Srolovitz, Appl. Phys. Lett. 69, 3007 (1996). https://doi.org/10.1063/1.116821

    Article  ADS  Google Scholar 

  269. J.D. Kress, D.E. Hanson, A.F. Voter, J. Vac. Sci. Technol. A 17, 2819 (1999). https://doi.org/10.1116/1.581948

    Article  Google Scholar 

  270. U. Hansen, S. Rodgers, K.F. Jensen, Phys. Rev. B 62, 2869 (2000). https://doi.org/10.1103/PhysRevB.62.2869

    Article  ADS  Google Scholar 

  271. S.-P. Ju, C.-I. Weng, J.-G. Chang, C.-C. Hwang, Surf. Coat. Technol. 149, 135 (2002). https://doi.org/10.1016/S0257-8972(01)01445-1

    Article  Google Scholar 

  272. S.-P. Ju, C.-I. Weng, J.-G. Chang, C.-C. Hwang, J. Vacuum Sci. Technol. B 20, 946 (2002). https://doi.org/10.1116/1.1477423

    Article  Google Scholar 

  273. C.-C. Hwang, J.G. Chang, S.P. Ju, J. Chin. Soc. Mech. Eng. Trans. Chin. Inst. Eng. Ser. C/Chung-Kuo Chi Hsueh Kung Ch’eng Hsuebo Pao 24, 309 (2003)

    Google Scholar 

  274. X.W. Zhou, D.A. Murdick, B. Gillespie, H.N.G. Wadley, Phys. Rev. B 73, 045337 (2006). https://doi.org/10.1103/PhysRevB.73.045337

    Article  ADS  Google Scholar 

  275. K. Barmak, J. Kim, C.S. Kim, W.E. Archibald, G.S. Rohrer, A.D. Rollett, D. Kinderlehrer, S. Ta’asan, H. Zhang, D.J. Srolovitz, Scripta Mater. 54, 1059 (2006). https://doi.org/10.1016/j.scriptamat.2005.11.060

    Article  Google Scholar 

  276. T.B. Ma, Y.-Z. Hu, H. Wang, X. Li, Phys. Rev. B 75, 035425 (2007). https://doi.org/10.1103/PhysRevB.75.035425

    Article  ADS  Google Scholar 

  277. B.-H. Chen, C.-K. Chen, S.C. Chang, Nucl. Instrum. Methods Phys. Res. Sect. B 260, 517 (2007). https://doi.org/10.1016/j.nimb.2007.03.105

    Article  ADS  Google Scholar 

  278. D. Adamović, V. Chirita, E.P. Münger, L. Hultman, J.E. Greene, Phys. Rev. B 76, 115418 (2007). https://doi.org/10.1103/PhysRevB.76.115418

    Article  ADS  Google Scholar 

  279. Z.-H. Hong, S.-F. Hwang, T.-H. Fang, Comput. Mater. Sci. 41, 70–77 (2007). https://doi.org/10.1016/j.commatsci.2007.03.004

    Article  Google Scholar 

  280. V. Georgieva, M. Saraiva, N. Jehanathan, O.I. Lebelev, D. Depla, A. Bogaerts, J. Phys. D Appl. Phys. 42, 065107 (2009). https://doi.org/10.1088/0022-3727/42/6/065107

    Article  ADS  Google Scholar 

  281. N. Baguera, V. Georgieva, L. Calderin, I.T. Todorov, S. Van Gils, A. Bogaerts, J. Cryst. Growth 311, 4034 (2009). https://doi.org/10.1016/j.jcrysgro.2009.06.034

    Article  ADS  Google Scholar 

  282. V. Georgieva, I.T. Todorov, A. Bogaerts, Chem. Phys. Lett. 485, 315 (2010). https://doi.org/10.1016/j.cplett.2009.12.067

    Article  ADS  Google Scholar 

  283. Z.-H. Hong, S.-F. Hwang, T.-H. Fang, Comput. Mater. Sci. 48, 520–528 (2010). https://doi.org/10.1016/j.commatsci.2010.02.018

    Article  Google Scholar 

  284. A.-P. Prskalo, S. Schmauder, C. Ziebert, J. Ye, S. Ulrich, Comput. Mater. Sci. 50, 1320 (2011). https://doi.org/10.1016/j.commatsci.2010.08.006

    Article  Google Scholar 

  285. Z.H. Xu, L. Yuan, D.B. Shan, B. Guo, Comput. Mater. Sci. 50, 1432 (2011). https://doi.org/10.1016/j.commatsci.2010.11.030

    Article  Google Scholar 

  286. S.A. Roncancio, D.F. Arias-Mateus, M.M. Gómez-Hermida, J.C. Riaño-Rojas, E. Restrepo-Parra, Appl. Surf. Sci. 258, 4473–4477 (2012). https://doi.org/10.1016/j.apsusc.2012.01.009

    Article  ADS  Google Scholar 

  287. J. Houska, S. Mraz, J.M. Schneider, J. Appl. Phys. 112, 073527 (2012). https://doi.org/10.1063/1.4757010

    Article  ADS  Google Scholar 

  288. G. Kokkoris, P. Brault, A.-L. Thomann, A. Caillard, D. Samelor, A.G. Boudouvis, C. Vahlas, Thin Solid Films 536, 115 (2013). https://doi.org/10.1016/j.tsf.2013.03.098

    Article  ADS  Google Scholar 

  289. L. Xie, P. Brault, A.-L. Thomann, L. Bedra, Appl. Surf. Sci. 274, 164 (2013). https://doi.org/10.1016/j.apsusc.2013.03.004

    Article  ADS  Google Scholar 

  290. L. Xie, P. Brault, A.-L. Thomann, J.-M. Bauchire, Appl. Surf. Sci. 285, 810 (2013). https://doi.org/10.1016/j.apsusc.2013.08.133

    Article  ADS  Google Scholar 

  291. T. Zientarski, D. Chocyk, Thin Solid Films 562, 347 (2014). https://doi.org/10.1016/j.tsf.2014.03.072

    Article  ADS  Google Scholar 

  292. L. Xie, P. Brault, C. Coutanceau, A. Caillard, J. Berndt, E.C. Neyts, Appl. Catal. B 162, 21 (2015). https://doi.org/10.1016/j.apcatb.2014.06.032

    Article  Google Scholar 

  293. L. Xie, P. Brault, A.-L. Thomann, X. Yang, Y. Zhang, G.Y. Shang, Intermetallics 68, 78 (2016). https://doi.org/10.1016/j.intermet.2015.09.008

    Article  Google Scholar 

  294. S.S. Firouzabadi, K. Dehghani, M. Naderi, F. Mahboubi, Appl. Surf. Sci. 367, 197 (2016). https://doi.org/10.1016/j.apsusc.2015.12.075

    Article  ADS  Google Scholar 

  295. J.W. Abraham, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 119, 185301 (2016). https://doi.org/10.1063/1.4948375

    Article  ADS  Google Scholar 

  296. A.D. Pogrebnjak, O.V. Bondar, G. Abadias, V. Ivashchenko, O.V. Sobol, S. Jurga, E. Coy, Ceram. Int. 42, 11743 (2016). https://doi.org/10.1016/j.ceramint.2016.04.095

    Article  Google Scholar 

  297. M. Nikravesh, G.H. Akbari, A. Poladi, Tribol. Int. 105, 185 (2017). https://doi.org/10.1016/j.triboint.2016.10.010

    Article  Google Scholar 

  298. D. Edström, D.G. Sangiovanni, L. Hultman, I. Petrov, J.E. Greene, V. Chirita, J. Appl. Phys. 121, 025302 (2017). https://doi.org/10.1063/1.4972963

    Article  ADS  Google Scholar 

  299. G. Zhu, J. Sun, L. Zhang, Z. Gan, J. Cryst. Growth 492, 60 (2018). https://doi.org/10.1016/j.jcrysgro.2018.04.002

    Article  ADS  Google Scholar 

  300. X. Zhou, X. Yu, D. Jacobson, G.B. Thompson, Appl. Surf. Sci. 469, 537 (2019). https://doi.org/10.1016/j.apsusc.2018.09.253

    Article  ADS  Google Scholar 

  301. M. Kateb, H. Hajihoseini, J.T. Gudmundsson, S. Ingvarsson, J. Vacuum Sci. Technol. A 37, 031306 (2019). https://doi.org/10.1116/1.5094429

    Article  ADS  Google Scholar 

  302. M. Kateb, J.T. Gudmundsson, S. Ingvarsson, J. Vacuum Sci. Technol. A 38, 043006 (2020). https://doi.org/10.1116/6.0000233

    Article  ADS  Google Scholar 

  303. A.V. Pham, T.H. Fang, A.S. Tran, T.H. Chen, J. Phys. Chem. Solids 147, 109663 (2020). https://doi.org/10.1016/j.jpcs.2020.109663

    Article  Google Scholar 

  304. M. Zhang, Z. Rao, K.S. Kim, Y. Qi, L. Fang, K. Sun, E. Chason, Materialia 16, 101043 (2021). https://doi.org/10.1016/j.mtla.2021.101043

    Article  Google Scholar 

  305. M. Kateb, J.T. Gudmundsson, P. Brault, A. Manolescu, S. Ingvarsson, Surf. Coat. Technol. 426, 127726 (2021). https://doi.org/10.1016/j.surfcoat.2021.127726

    Article  Google Scholar 

  306. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. I’nt Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. 271, 10817 (2022). https://doi.org/10.1016/j.cpc.2021.108171

    Article  Google Scholar 

  307. URL: https://www.lammps.org/

  308. R. Li, L. Xie, W.Y. Wang, P.K. Liaw, Y. Zhang, Front. Mater. 7, 290 (2020). https://doi.org/10.3389/fmats.2020.00290

    Article  ADS  Google Scholar 

  309. A. Deschamps, F. Tancret, I.-E. Benrabah, F. De Geuser, H.P. Van Landeghem, C. R. Phys. 19, 737 (2018). https://doi.org/10.1016/j.crhy.2018.08.001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by SAFRAN Tech—Université d’Orléans – CNRS grant #LS 245305 and Conseil Regional du Centre – Val de Loire under Grant MATEX-202100145829. Elizabeth Rowley-Jolivet is gratefully acknowledged for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

PB wrote all drafts of the review article. All authors have read, discussed corrected, and edited all aspects of the review and have approved the final manuscript.

Corresponding author

Correspondence to Pascal Brault.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brault, P., Thomann, AL. & Cavarroc, M. Theory and molecular simulations of plasma sputtering, transport and deposition processes. Eur. Phys. J. D 77, 19 (2023). https://doi.org/10.1140/epjd/s10053-023-00592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00592-x

Navigation