Skip to main content
Log in

Relative importance of the electron continuum intermediate state in single-electron capture into any state of fast protons from helium-like atomic systems

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Single-electron capture by fast protons from helium-like atomic targets is investigated at intermediate and high impact energies. The main purpose of the present study is a comprehensive analysis of the relative importance of the electron continuum intermediate state (ionization continua), with respect to direct transfer. To achieve this goal, first- and second-order theories are employed, and their results are thoroughly compared. The prior form of the boundary-corrected continuum intermediate state method (BCIS) is utilized, in both its three-body and four-body formulation, in addition to the four-body boundary-corrected first-Born approximation (CB1-4B), in both its prior and post form. BCIS methods belong to the class of second-order theories, while CB1 methods belong to the class of first-order theories. Relative importance of ionization continua is examined in the example of single-electron capture in collisions of fast protons with ground-state atomic helium. Both differential and total cross sections are analyzed, for single-electron capture into any final state of the projectile. The presented cross sections, aside from their fundamental importance, are relevant in various interdisciplinary applications, such as in astrophysics, thermonuclear fusion and plasma physics, and medical physics.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets (cross section data) generated and/or analyzed during the current study are available from the corresponding author upon reasonable request].

References

  1. J.R. Oppenheimer, Phys. Rev. 31, 349 (1928)

    ADS  Google Scholar 

  2. H.C. Brinkman, H.A. Kramers, Proc. Acad. Sci. Amst. 33, 973 (1930)

    Google Scholar 

  3. Dž. Belkić, Principles of Quantum Scattering Theory, Institute of Physics, Bristol (2004)

  4. I.M. Cheshire, Proc. Phys. Soc. Lond. 84, 89 (1964)

    ADS  Google Scholar 

  5. Dž. Belkić, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979)

  6. Dž. Belkić, Quantum Theory of High-Energy Ion-Atom Collisions (Taylor and Francis, Oxford, 2008)

  7. Dž. Belkić, I. Mančev, J. Hanssen, Rev. Mod. Phys. 80, 249 (2008)

  8. Dž. Belkić (ed.), Theory of Heavy Ion Collisions in Hadron Therapy, vol. 65 (Elsevier, Amsterdam, 2013)

  9. E. Ghanbari-Adivi, A.N. Velayati, Cent. Eur. J. Phys. 11, 423 (2013)

    Google Scholar 

  10. S.K. Datta, D.S.F. Crothers, R. McCarroll, J. Phys. B 23, 479 (1990)

    ADS  Google Scholar 

  11. S.K. Datta, J. Phys. B 25, 1001 (1990)

    ADS  Google Scholar 

  12. I. Mančev, N. Milojević, Dž. Belkić, At. Data Nucl. Data Tables 129–130, 101282 (2019)

  13. T. Kirchner, H.J. Lüdde, R.M. Dreizler, Phys. Rev. A 61, 012705 (1999)

    ADS  Google Scholar 

  14. T. Kirchner, M. Horbatsch, M. Keim, H.J. Lüdde, Phys. Rev. A 69, 012708 (1999)

    ADS  Google Scholar 

  15. A.E. Martinez, G.R. Deco, R.D. Rivarola, P.D. Fainstein, Nucl. Inst. Meth. Phys. Res. B 34, 32 (1988)

    ADS  Google Scholar 

  16. P.N. Abufager, A.E. Martinez, R.D. Rivarola, P.D. Fainstein, Nucl. Inst. Meth. Phys. Res. B 233, 255 (2005)

    ADS  Google Scholar 

  17. M.S. Gravielle, J.E. Miraglia, Phys. Rev. A 38, 5034 (1988)

    ADS  Google Scholar 

  18. T.G. Winter, Phys. Rev. A 47, 264 (1993)

    ADS  Google Scholar 

  19. T.G. Winter, Phys. Rev. A 48, 3706 (1993)

    ADS  Google Scholar 

  20. S. Houamer, Yu.V. Popov, C. Dal Cappello, Phys. Lett. A 373, 4447 (2009)

    ADS  Google Scholar 

  21. D.S.F. Crothers, K.M. Dunseath, J. Phys. B 20, 4115 (1987)

    ADS  Google Scholar 

  22. H. Marxer, J.S. Briggs, J. Phys. B 25, 3823 (1992)

    ADS  Google Scholar 

  23. I. Mančev, N. Milojević, Dž. Belkić, Eur. Phys. J. D 72, 209 (2018)

  24. E. Ghanbari-Adivi, H. Ghavaminia, Int. J. Mod. Phys. E 24, 1550093 (2015)

    ADS  Google Scholar 

  25. E. Ghanbari-Adivi, J. Phys. B 44, 165204 (2011)

    ADS  Google Scholar 

  26. I. Mančev, N. Milojević, Dž. Belkić, EPL 103, 23001 (2013)

  27. I. Mančev, N. Milojević, Dž. Belkić, At. Data Nucl. Data Tables 102, 6 (2015)

  28. N. Milojević, I. Mančev, Dž. Belkić, Phys. Rev. A 96(3), 032709 (2017)

  29. I. Mančev, N. Milojević, Dž, Belkić. Phys. Rev. A 86, 022704 (2012)

  30. I. Mančev, N. Milojević, Dž, Belkić. Phys. Rev. A 88, 052706 (2013)

  31. N. Milojević, J. Phys. Conf. Ser. 565, 012004 (2014)

    Google Scholar 

  32. N. Milojević, I. Mančev, D. Delibašić, Dž. Belkić, Phys. Rev. A 102, 012816 (2020)

  33. I. Mančev, N. Milojević, Dž. Belkić, Phys. Rev. A 91, 062705 (2015)

  34. I. Mančev, N. Milojević, D. Delibašić, Dž. Belkić, Phys. Scr. 95(6), 065403 (2020)

  35. D. Delibašić, N. Milojević, I. Mančev, Dž. Belkić, At. Data Nucl. Data Tables 139, 101417 (2021)

  36. D. Delibašić, N. Milojević, I. Mančev, Dž. Belkić, Eur. Phys. J. D 75, 115 (2021)

  37. D. Delibašić, N. Milojević, I. Mančev, Dž. Belkić, At. Data Nucl. Data Tables 148, 101530 (2022)

  38. D. Delibašić, N. Milojević, I. Mančev, F.U. Phys, Chem. Tech. 18(2), 131 (2020)

    Google Scholar 

  39. D. Delibašić, Publ. Astron. Obs. Belgrade 102, 29 (2022)

    Google Scholar 

  40. R. Shakeshaft, Phys. Rev. A 18, 1930 (1978)

    ADS  Google Scholar 

  41. X.M. Tong, D. Kato, T. Watanabe, S. Ohtani, Phys. Rev. 62, 052701 (2000)

    Google Scholar 

  42. S.K. Avazbaev, A.S. Kadyrov, I.B. Abdurakhmanov, D.V. Fursa, I. Bray, Phys. Rev. A 93, 022710 (2016)

    ADS  Google Scholar 

  43. I.B. Abdurakhmanov, J.J. Bailey, A.S. Kadyrov, I. Bray, Phys. Rev. A 97, 032707 (2018)

    ADS  Google Scholar 

  44. M. Zapukhlyak, T. Kirchner, Phys. Rev. A 80, 062705 (2009)

    ADS  Google Scholar 

  45. M. Baxter, T. Kirchner, Phys. Rev. A 93, 012502 (2016)

    ADS  Google Scholar 

  46. A. Igarashi, C.D. Lin, Phys. Rev. Lett. 83, 4041 (1999)

    ADS  Google Scholar 

  47. I.B. Abdurakhmanov, A.S. Kadyrov, S.K. Avazbaev, I. Bray, J. Phys. B 49, 115203 (2016)

    ADS  Google Scholar 

  48. J. Faulkner, I.B. Abdurakhmanov, S.U. Alladustov, A.S. Kadyrov, I. Bray, Plasma Phys. Control. Fusion 61, 095005 (2019)

    ADS  Google Scholar 

  49. T.E. Cravens, Science 296, 1042 (2002)

    ADS  Google Scholar 

  50. R.C. Isler, Plasma Phys. Control. Fusion 6, 171 (1994)

    ADS  Google Scholar 

  51. D.M. Thomas, Phys. Plasmas 19, 056118 (2012)

    ADS  Google Scholar 

  52. R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H.P.L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, P. Zaccaria, Nucl. Fusion 49, 045006 (2009)

    ADS  Google Scholar 

  53. H. Anderson, M.G. von Hellermann, R. Hoekstra, L.D. Horton, A.C. Howman, R.W.T. Konig, R. Martin, R.E. Olson, H.P. Summers, Plasma Phys. Control. Fusion 42, 781 (2000)

    ADS  Google Scholar 

  54. Dž. Belkić, Z. Med, Phys. 31, 122 (2021)

  55. L.F. Errea, C. Illescas, P.M.M. Gabás, L. Méndez, I. Rabadán, A. Riera, B. Pons, Fast Ion-Atom and Ion-Molecule Collisions, ed. by Dž. Belkić, (World Scientific Publishing, Singapore, 2013) p. 231

  56. R. Garcia-Molina, I. Abril, P. de Vera, Fast Ion-Atom and Ion-Molecule Collisions, ed. by Dž. Belkić, (World Scientific Publishing, Singapore, 2013) p. 271

  57. M.A. Rodríguez-Bernal, J.A. Liendo, Theory of Heavy Ion Collision Physics in Hadron Therapy, ed. by Dž. Belkić, (Elsevier, Amsterdam, 2013) p. 203

  58. R.D. Rivarola, M.E. Galassi, P.D. Fainstein, C. Champion, Theory of Heavy Ion Collision Physics in Hadron Therapy, ed. by Dž. Belkić, (Elsevier, Amsterdam, 2013) p. 231

  59. C. Champion, J. Hanssen, R.D. Rivarola, Theory of Heavy Ion Collision Physics in Hadron Therapy, ed. by Dž. Belkić, (Elsevier, Amsterdam, 2013) p. 269

  60. J.J. Bailey, I.B. Abdurakhmanov, A.S. Kadyrov, I. Bray, State-of-the-Art-Reviews on Energetic Ion-Atom and Ion-Molecule Collisions, ed. by Dž. Belkić, I. Bray, A. Kadyrov, (World Scientific Publishing, Singapore, 2019) p. 227

  61. S. Guatelli, D. Bolst, Z. Francis, S. Inserti, V. Ivanchenko, A.B. Rosenfeld, State-of-the-Art-Reviews on Energetic Ion-Atom and Ion-Molecule Collisions, ed. by Dž. Belkić, I. Bray, A. Kadyrov, (World Scientific Publishing, Singapore, 2019) p. 255

  62. J.N. Silverman, O. Platas, F.A. Matsen, J. Chem. Phys. 32, 1402 (1960)

  63. P. Löwdin, Phys. Rev. 90, 120 (1953)

    ADS  Google Scholar 

  64. R.H. Hughes, E.D. Stokes, C. Song-Sik, T.J. King, Phys. Rev. 4, 1453 (1971)

    ADS  Google Scholar 

  65. R. Cline, P.J.M. van der Burgt, W.B. Westerveld, J.S. Risley, Phys. Rev. A 49, 2613 (1994)

    ADS  Google Scholar 

  66. R. Hippler, W. Harbich, M. Faust, H.O. Lutz, L.J. Dube, J. Phys. B 19, 1507 (1986)

    ADS  Google Scholar 

  67. R. Hippler, W. Harbich, H. Madeheim, H. Kleinpoppen, H.O. Lutz, Phys. Rev. A 35, 3139 (1987)

    ADS  Google Scholar 

  68. J.C. Ford, E.W. Thomas, Phys. Rev. A 5, 1694 (1972)

    ADS  Google Scholar 

  69. R.J. Conrads, T.W. Nichols, J.C. Ford, E.W. Thomas, Phys. Rev. A 7, 1928 (1973)

    ADS  Google Scholar 

  70. M.C. Brower, F.M. Pipkin, Phys. Rev. A 39, 3323 (1989)

    ADS  Google Scholar 

  71. R.A. Cline, W.B. Westerveld, J.S. Risley, Phys. Rev. A 43, 1611 (1991)

    ADS  Google Scholar 

  72. J.L. Edwards, E.W. Thomas, Phys. Rev. A 2, 2346 (1970)

    ADS  Google Scholar 

  73. R.H. Hughes, H.R. Dawson, B.M. Doughty, Phys. Rev. 164, 166 (1967)

    ADS  Google Scholar 

  74. B.M. Doughty, M.L. Goad, R.W. Cernosek, Phys. Rev. A 18, 29 (1978)

    ADS  Google Scholar 

  75. L.M. Welsh, K.H. Berkner, S.N. Kaplan, R.V. Pyle, Phys. Rev. 158, 85 (1967)

    ADS  Google Scholar 

  76. U. Schryber, Helv. Phys. Acta 40, 1023 (1967)

    Google Scholar 

  77. J.F. Williams, Phys. Rev. 157, 97 (1967)

    ADS  Google Scholar 

  78. P.J. Martin, K. Arnett, D.M. Blankenship, T.J. Kvale, J.L. Peacher, E. Redd, V.C. Sutcliffe, J.T. Park, C.D. Lin, J.H. McGuire, Phys. Rev. A 23, 2858 (1981)

    ADS  Google Scholar 

  79. E. Horsdal-Pedersen, C. Cocke, M. Stockli, Phys. Rev. Lett. 50, 1910 (1983)

    ADS  Google Scholar 

  80. M.B. Shah, H.B. Gilbody, J. Phys. B 18, 899 (1985)

    ADS  Google Scholar 

  81. M.B. Shah, P. McCallion, H.B. Gilbody, J. Phys. B 22, 3037 (1989)

    ADS  Google Scholar 

  82. M.S. Schöffler, J. Titze, L.Ph.H. Schmidt, T. Jehnke, N. Neumann, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, I. Mančev, Phys. Rev. A 79, 064701 (2009)

  83. D.L. Guo, X. Ma, S.F. Zhang, X.L. Zhu, W.T. Feng, R.T. Zhang, B. Li, H.P. Liu, S.C. Yan, P.J. Zhang, Q. Wang, Phys. Rev. A 86, 052707 (2012)

    ADS  Google Scholar 

  84. P. Loftager, Private communication (2002)

  85. D. Fischer, M. Gudmundsson, Z. Berényi, N. Haag, H.A.B. Johansson, D. Misra, P. Reinhed, A. Kállberg, A. Simonsson, K. Stöchkel, H. Cederquist, H.T. Schmidt, Phys. Rev. A 81, 012714 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the Ministry of Education, Science and Technological Development of the Republic of Serbia for support under Contract No. 451-03-68/2022-14/200124. The material presented and discussed in this paper is based on the author’s oral progress report, given at the \(31^{\textrm{st}}\) Summer School and International Symposium on the Physics of Ionized Gases (Belgrade, Serbia, September 5–9, 2022). The abstract of this progress report was previously published in the symposium’s Book of contributed papers & abstracts of invited lectures, topical invited lectures and progress reports [39].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Delibašić.

Ethics declarations

Conflict of interest

The author declares that he has no known competing funding, employment, financial or non-financial interests that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delibašić, D. Relative importance of the electron continuum intermediate state in single-electron capture into any state of fast protons from helium-like atomic systems. Eur. Phys. J. D 77, 6 (2023). https://doi.org/10.1140/epjd/s10053-022-00589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00589-y

Navigation