Skip to main content
Log in

Analysis of electronic properties of dense plasma-embedded highly charged ions using temperature-dependent ion sphere model

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The total and orbital energies, dipole oscillator strength and Shannon entropy in position space are estimated for different energy levels of hydrogen- and helium-like Al and Cl ions embedded in a dense plasma medium mimicked by classical ion sphere (IS) model as well as by temperature-dependent analytic ion sphere (AIS) model. The associated Schrödinger and Hartree–Fock equations are solved by means of a numerical grid method. The results are compared with the literature values, wherever available, and found good agreement. The total energy reflects the ionization of the electron in the ground and excited states for one- and two-electron ions as the plasma density is gradually increased for a particular temperature. The nature of variation in dipole oscillator strength with the plasma parameters is a direct consequence of such ionization process. The Shannon entropy values in position space support the delocalization of the bound electron density with the increment of plasma density for fixed temperature. Contrast behavior is noted for the total energy and Shannon entropy with the increment of plasma temperature for fixed plasma density. It is a general finding that as the plasma electron temperature is sufficiently increased in the AIS model, we corroborated the excellent agreement with the results estimated using the IS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article].

References

  1. R.K. Janev, S. Zhang, J. Wang, Review of quantum collision dynamics in Debye plasmas. Matter Rad. Extrem. 1, 237–248 (2016)

    Google Scholar 

  2. K.D. Sen (ed.), Electronic Structure of Quantum Confined Atoms and Molecules (Springer, Berlin, 2014)

    MATH  Google Scholar 

  3. E. Ley-Koo, Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings. Revista Méxicana de Física 64, 326–363 (2018)

    MathSciNet  Google Scholar 

  4. A. Vincenzo, H.E. Montgomery, C.N. Ramachandran, N. Sathyamurthy, Atoms and molecules in a confined environment. Eur. Phys. J. D 75(6), 187 (2021)

    ADS  Google Scholar 

  5. W. Jaskólski, Confined many-electron systems. Phys. Rep. 271(1), 1–66 (1996)

    ADS  Google Scholar 

  6. D. Dawra, M. Dimri, A.K. Singh, A.K.S. Jha, R.K. Pandey, R. Sharma, M. Mohan, Influence of strongly coupled plasma environment on photoionization of H-like O\(^7{+}\) ion. Phys. Plasm. 28(11), 112706 (2021)

    ADS  Google Scholar 

  7. S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment. Phys. Rev. A 91, 042515 (2015)

    ADS  Google Scholar 

  8. E. Hückel, P. Debye, The theory of electrolytes: I. lowering of freezing point and related phenomena. Phys. Z 24, 185–206 (1923)

    Google Scholar 

  9. M.S. Murillo, J.C. Weisheit, Dense plasmas, screened interactions, and atomic ionization. Phys. Rep. 302(1), 1–65 (1998)

    ADS  Google Scholar 

  10. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, Two-electron atoms under spatially compressed Debye plasma. Phys. Plasm. 23(9), 092704 (2016)

    ADS  Google Scholar 

  11. P.K. Shukla, B. Eliasson, Screening and wake potentials of a test charge in quantum plasmas. Phys. Lett. A 372, 2897–2899 (2008)

    ADS  MATH  Google Scholar 

  12. N. Sujay Kr, S. Mondal, J.K. Saha, Structural properties of hydrogen-like ions (\(z= 1\)–18) under quantum and classical plasma environment. Atom. Data Nucl. Data Tables 137, 101379 (2021)

    Google Scholar 

  13. B. Saha, S. Fritzsche, Influence of dense plasma on the low-lying transitions in be-like ions: relativistic multiconfiguration Dirac–Fock calculation. J. Phys. B Atom. Mol. Opt. Phys. 40(2), 259–270 (2007)

    ADS  Google Scholar 

  14. M.K. Bahar, A. Soylu, Generalized potential for confined positronium atom immersed in plasmas. Chem. Phys. 530, 110584 (2020)

    Google Scholar 

  15. N. Mukherjee, C.N. Patra, A.K. Roy, Confined hydrogenlike ions in plasma environments. Phys. Rev. A 104, 012803 (2021)

    MathSciNet  ADS  Google Scholar 

  16. L.G. Jiao, Y.Y. He, Y.Z. Zhang, Y.K. Ho, Multipole polarizabilities and critical phenomena of hydrogen-like atoms in dense quantum plasmas. J. Phys. B Atom. Mol. Opt. Phys. 54(6), 065005 (2021)

    ADS  Google Scholar 

  17. S.B. Doma, M.A. Salem, K.D. Sen, Plasma confined ground and excited state helium atom: a comparison theorem study using variational Monte Carlo and Lagrange mesh method. Computation 9(12), 138 (2021)

    Google Scholar 

  18. M.K. Bahar, Relativistic treatments of quantum plasma-immersed Li, Na, K atoms. Eur. Phys. J. Plus 137, 413 (2022)

    Google Scholar 

  19. N. Masanta, A. Ghoshal, Y.K. Ho, Positron scattering from hydrogen atom in quantum plasmas: S-wave resonance states. Phys. Plasm. 29(5), 053505 (2022)

    ADS  Google Scholar 

  20. Z.-B. Chen, Theoretical evaluation of excitation cross section and fluorescence polarization of a solid-density Si plasma. Phys. Plasm. 29(2), 022106 (2022)

    ADS  Google Scholar 

  21. M.K. Bahar, Manipulating the orbital charge-currents of compressed Li and Na atom embedded in quantum plasma. Chem. Phys. 557, 111484 (2022)

    Google Scholar 

  22. K. D. Sen, K. Kumar, C. Yadav, V. Prasad, Multipole polarizabilities and dipole oscillator strengths of H-atom in nonideal classical plasmas. Eur. Phys. J. Plus, 137(78), 2022

  23. A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, B. Fricke, Spectra of heliumlike carbon, Aluminium and argon under strongly coupled plasma. Eur. Phys. J. D 55(3), 645 (2009)

    ADS  Google Scholar 

  24. Z.-B. Chen, K. Ma, Y.-L. Ma, K. Wang, Study of energies and radiative properties of He-like ions within a dense plasma. Phys. Plasm. 26(8), 082101 (2019)

    ADS  Google Scholar 

  25. X.-F. Li, G. Jiang, H.-B. Wang, M. Wu, Q. Sun, Transition energies, transition probabilities and weighted oscillator strengths of He-like al in hot and dense plasmas. Physica Scripta 92(7), 075401 (2017)

    ADS  Google Scholar 

  26. Z.-B. Chen, H. Hong-Wei, K. Ma, X.-B. Liu, X.-L. Guo, S. Li, B.-H. Zhu, L. Huang, K. Wang, Influence of dense plasma on the energy levels and transition properties in highly charged ions. Phys. Plasm. 25(3), 032108 (2018)

    ADS  Google Scholar 

  27. Z.-B. Chen, Calculation of the energies and oscillator strengths of Cl\(^{15+}\) in hot dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 237, 106615 (2019)

    Google Scholar 

  28. Z.-B. Chen, K. Wang, Photoionization of H-like C\(^{5+}\) ion in the presence of a strongly coupled plasma environment. J. Quant. Spectrosc. Radiat. Transf. 245, 106847 (2020)

    Google Scholar 

  29. K. Ma, Y. Chu, Z.B. Chen, Analytical calculation of Cl\(^{15+}\) ion immersed in dense plasmas. Few-Body Syst. 61(4), 42 (2020)

    ADS  Google Scholar 

  30. P.C. Bhowmik, F. Yadav, R. Narendra Singh, A. Goyal, M. Mohan, Effect of plasma environment on spectral and structural properties of H-like C, N and O ions. J. Electron Spectrosc. Relat. Phenom. 251, 147107 (2021)

    Google Scholar 

  31. C. Martínez-Flores, M. Zeama, I. Nasser, Shannon, rényi entropies, and fisher information calculations of the Li\(^{1+}\) and Be\(^{2+}\) ions screened by the ion-sphere plasma model. Physica Scripta 96(6), 065404 (2021)

    ADS  Google Scholar 

  32. X.-F. Li, L.-P. Jia, H.-B. Wang, G. Jiang, Transition parameters of Li-like ions (\(z = 7\)–11) in dense plasmas. Chin. Phys. B 30(5), 053102 (2021)

    ADS  Google Scholar 

  33. X. Li, F.B. Rosmej, V.S. Lisitsa, V.A. Astapenko, An analytical plasma screening potential based on the self-consistent-field ion-sphere model. Phys. Plasm. 26(3), 033301 (2019)

    ADS  Google Scholar 

  34. A.K. Singh, D. Dawra, M. Dimri, A.K.S. Jha, R.K. Pandey, M. Mohan, Plasma screening effects on the atomic structure of He-like ions embedded in strongly coupled plasma. Phys. Lett. A 384(12), 126369 (2020)

    Google Scholar 

  35. C. Martínez-Flores, R. Cabrera-Trujillo, Derived properties from the dipole and generalized oscillator strength distributions of an endohedral confined hydrogen atom. J. Phys. B Atom. Mol. Opt. Phys. 51(5), 055203 (2018)

    ADS  Google Scholar 

  36. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Books on Chemistry (Dover Publications, Mineola, 1996)

    Google Scholar 

  37. L.G. Jiao, L.R. Zan, L. Zhu, J. Ma, Y.K. Ho, Accurate computation of screened coulomb potential integrals in numerical Hartree-Fock programs. Comput. Phys. Commun. 244, 217–227 (2019)

    MathSciNet  ADS  Google Scholar 

  38. M.-A. Martínez-Sánchez, C. Martínez-Flores, R. Vargas, J. Garza, R. Cabrera-Trujillo, K.D. Sen, Ionization of many-electron atoms by the action of two plasma models. Phys. Rev. E 103, 043202 (2021)

    ADS  Google Scholar 

  39. C. Froese-Fischer, T. Brage, P. Johnsson, Computational Atomic Structure: An MCHF Approach (Taylor & Francis, Milton Park, 1997)

    MATH  Google Scholar 

  40. C.E. Shannon, A mathematical theory of communication. Bell Syst. Techn. J. 27(3), 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  41. C.F. Matta, M. Sichinga, P.W. Ayers, Information theoretic properties from the quantum theory of atoms in molecules. Chem. Phys. Lett. 514(4), 379–383 (2011)

    ADS  Google Scholar 

  42. N. Flores-Gallegos, A new approach of Shannon’s entropy in atoms. Chem. Phys. Lett. 650, 57–59 (2016)

    ADS  Google Scholar 

  43. C. Martínez-Flores, R. Cabrera-Trujillo, Dipole and generalized oscillator strengths-dependent electronic properties of helium atoms immersed in a plasma. Eur. Phys. J. D 75(4), 133 (2021)

    ADS  Google Scholar 

  44. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules—the Bethe theory revisited. Rev. Mod. Phys. 43, 297–347 (1971)

    ADS  Google Scholar 

  45. H. Friedrich, Theoretical Atomic Physics, 3rd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  46. National institute of standards and technology. https://www.nist.gov/pml/atomic-spectra-database. Accessed: 2022-07-01

  47. C.C.J. Roothaan, L.M. Sachs, A.W. Weiss, Analytical self-consistent field functions for the atomic configurations \(1{s}^{2}\), \(1{s}^{2}2s\), and \(1{s}^{2}2{s}^{2}\). Rev. Mod. Phys. 32, 186–194 (1960)

    MathSciNet  ADS  Google Scholar 

  48. M. Sow, I. Sakho, B. Sow, A. Diouf, Y. Gning, B. Diop, M. Dieng, A. Diallo, M. Ba, J. Badiane, M. Biaye, A. Wagué, Modified atomic orbital calculations of energy of the (2s2 1s) ground-state, the (2p2 1d); (3d2 1d) and (4f2 1i) doubly excited states of helium isoelectronic sequence from h- to ca18+. J. Appl. Math. Phys. 8, 85–99 (2020)

    Google Scholar 

  49. I. Nasser, M. Zeama, A. Abdel-Hady, Rényi, Fisher, Shannon, and their electron correlation tools for two-electron series. Physica Scripta 95(9), 095401 (2020)

    ADS  Google Scholar 

  50. X.-F. Li, G. Jiang, H.-B. Wang, Q. Sun, Atomic structure and transition properties of H-like al in hot and dense plasmas. Chin. Phys. B 26(1), 013101 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

M.F.-C. thanks the support of DGAPA-UNAM for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to César Martínez-Flores.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Flores, C., Saha, J.K. Analysis of electronic properties of dense plasma-embedded highly charged ions using temperature-dependent ion sphere model. Eur. Phys. J. D 76, 224 (2022). https://doi.org/10.1140/epjd/s10053-022-00560-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00560-x

Navigation