Skip to main content
Log in

Tunable enhanced THz absorption in Fibonacci photonic crystals with graphene

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the THz absorption properties of Fibonacci photonic crystals with graphene by using characteristics matrix method based on conductivity. We demonstrate that the structure can lead to perfect THz absorption because of strong photon localization in the defect layer of Fibonacci photonic crystals with graphene. By adjusting the incident angle, chemical potential, relaxation rate or the period number of Fibonacci photonic crystals, the maximum THz absorptivity can be tailored, and the absorptivity may be tuned continuously from 0 to 100%. The position of the THz absorption peaks can be tuned by changing the center wavelength or the thicknesses of structure layers. Moreover, the position of the THz absorption peaks can be tuned by changing the center wavelength or the thicknesses of structure layers. The proposed structure is easy to implement and has potential application in optoelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. K. Edagawa, Sci. Technol. Adv. Mater. 15, 034805 (2014)

    Article  Google Scholar 

  2. N. Ansari, F. Ghorbani, J. Opt. Soc. Am. B 35, 1179 (2018)

    Article  ADS  Google Scholar 

  3. N.B. Ali, M. Kanzari, Phys. Status. Solidi. A 208, 161 (2011)

    Article  ADS  Google Scholar 

  4. F. Wu, K. Lyu, S. Hu, M. Yao, S. Xiao, Opt. Mater. 111, 110680 (2021)

    Article  Google Scholar 

  5. J. Wang, Y. Jiang, Opt. Express 25, 5206 (2017)

    Article  ADS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. B. Ruan, Q. You, J. Zhu, L. Wu, J. Guo, X. Dai, Y. Xiang, IEEE Sens. J. 18, 7436 (2018)

    Article  ADS  Google Scholar 

  9. M. Mehdi Keshavarz, A. Alighanbari, Appl. Opt. 59, 4517 (2020)

    Article  ADS  Google Scholar 

  10. M. Born, E. Wolf, Principles of Optics (Cambridge University, 1999)

    Book  Google Scholar 

  11. J.-T. Liu, N.-H. Liu, J. Li, X. Jing Li, J.-H. Huang, Appl. Phys. Lett. 101, 052104 (2012)

    Article  ADS  Google Scholar 

  12. J. Zhang, J. Tian, L. Li, IEEE Photonics J. 10, 1 (2018)

    Google Scholar 

  13. M. Nejat, N. Nozhat, IEEE Sens. J. 19, 10490 (2019)

    Article  ADS  Google Scholar 

  14. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A.K. Azad, Nanoscale 7, 12682 (2015)

    Article  ADS  Google Scholar 

  15. Z. Chen, H. Chen, J. Yin, R. Zhang, H. Jile, D. Xu, Z. Yi, Z. Zhou, S. Cai, P. Yan, Diam. Relat. Mater. 116, 108393 (2021)

    Article  ADS  Google Scholar 

  16. M.S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M.J. Nine, A. Dinovitser, C.M.B. Cordeiro, B.W.H. Ng, D. Abbott, Carbon 158, 559 (2020)

    Article  Google Scholar 

  17. J. Wu, Eng. Sci. 18, 187 (2022)

    Google Scholar 

  18. Y. Zhang, Z. Wu, Y. Cao, H. Zhang, Opt. Commun. 338, 168 (2015)

    Article  ADS  Google Scholar 

  19. A. Namdar, R. Feizollahi Onsoroudi, H. Khoshsima, M. Sahrai, Superlattice Microstruct. 115, 78 (2018)

    Article  ADS  Google Scholar 

  20. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys. Condens. Matter 25, 215301 (2013)

    Article  ADS  Google Scholar 

  21. L. Qi, Z. Yang, F. Lan, X. Gao, Z. Shi, Phys. Plasmas 17, 042501 (2010)

    Article  ADS  Google Scholar 

  22. X.-H. Deng, J.-T. Liu, J.-R. Yuan, T.-B. Wang, Acta Phys. Sin. 64, 057801 (2015)

    Article  Google Scholar 

  23. J. Wu, Results Phys. 33, 105210 (2022)

    Article  Google Scholar 

  24. C. Malek, A.H. Aly, S. Alamri, W. Sabra, Phys. Scripta 96, 0275 (2021)

    Article  Google Scholar 

  25. J. Wu, X. Yang, Z. Wang, B. Wu, X. Wu, Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00447-w

    Article  Google Scholar 

  26. H.F. Liu, J.X. Wu, J.R. Yuan, X.H. Deng, Europhys. Lett. 134, 57003 (2021)

    Article  ADS  Google Scholar 

  27. W.R. Zhu, I.D. Rukhlenko, M. Premaratne, Appl. Phys. Lett. 102, 241914 (2013)

    Article  ADS  Google Scholar 

  28. S.Y. Xiao, T. Wang, Y.B. Liu, C. Xu, X. Han, X.C. Yan, Phys. Chem. Chem. Phys. 18, 26661 (2016)

    Article  Google Scholar 

  29. Z.Y. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L.L. Ma, Y.M. Wang, P.M. Ajayan, P. Nordlander, N.J. Halas, F.J.G. de Abajo, ACS Nano 7, 2388 (2013)

    Article  Google Scholar 

  30. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Nano Lett. 14, 299 (2014)

    Article  ADS  Google Scholar 

  31. D. Wang, X. Liu, L. He, Y. Yin, D. Wu, J. Shi, Nano Lett. 10, 4989 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Research Fund of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) No. 2022-KF-15, the Open Research Fund of State Key Laboratory of Millimeter Waves No. K201606, the NSFC Grant Nos. 11664025 and 11964018.

Author information

Authors and Affiliations

Authors

Contributions

PZ performed the calculation, under the supervision of HD, HD, HL, JD and JY analyzed the results and prepared the original draft of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Xin-Hua Deng.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Deng, XH., Liu, H. et al. Tunable enhanced THz absorption in Fibonacci photonic crystals with graphene. Eur. Phys. J. D 76, 163 (2022). https://doi.org/10.1140/epjd/s10053-022-00488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00488-2

Navigation