Skip to main content
Log in

Chirp duration effect on high-order harmonic spectra

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Chirp duration effect on high-order harmonic spectra has been theoretically studied. The results show that (i) as the chirp duration increases, both the harmonic cutoff and the harmonic intensity are enhanced. Meanwhile, at some given chirp duration, the maximum harmonic cutoff and harmonic intensity can be found (i.e., 30 fs in this paper). (ii) For the cases of the shorter and longer chirp duration, the variations of the harmonic cutoff and the harmonic intensity show a larger and smaller trend as the chirp delay changes, respectively. (iii) Furthermore, with the introduction of the two-color field scheme, the harmonic spectrum from the shorter chirp duration can produce a stronger harmonic intensity, while the changes of the harmonic cutoff and the harmonic intensity are very small for the longer chirp duration two-color pulse case. That is to say, the shorter chirp duration is beneficial to the combined field scheme, while the longer chirp duration is suitable for the single-color field scheme. (iv) Finally, three isolated attosecond pulses of 84 as, 88 as and 25 as can be generated when using the shorter and longer chirp duration cases, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data can be obtained by sending a email to author.]

References

  1. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  2. Y.T. Zhao, X.Q. Xu, S.C. Jiang, X. Zhao, J.G. Chen, Y.J. Yang, Phys. Rev. A 101, 033413 (2020)

    Article  ADS  Google Scholar 

  3. G. Chen, N. Su, Eur. Phys. J. D 74, 202 (2020)

    Article  ADS  Google Scholar 

  4. K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)

    Article  ADS  Google Scholar 

  5. C.Y. Xu, L.Q. Feng, Y. Qiao, Y. Li, Eur. Phys. J. D 74, 139 (2020)

    Article  ADS  Google Scholar 

  6. L. Li, M. Zheng, R.L.Q. Feng, Y. Qiao, Int. J. Mod. Phys. B 33, 1950130 (2019)

    Article  ADS  Google Scholar 

  7. S.C. Jiang, J.G. Chen, H. Wei, C. Yu, R.F. Lu, C.D. Lin, Phys. Rev. Lett. 120, 253201 (2018)

    Article  ADS  Google Scholar 

  8. C. Yu, S.C. Jiang, R.F. Lu, Adv. Phys. X 4, 1562982 (2019)

    Google Scholar 

  9. Y.T. Zhao, S.Y. Ma, S.C. Jiang, Y.J. Yang, X. Zhao, J.G. Chen, Opt. Exp. 27, 34392 (2019)

    Article  ADS  Google Scholar 

  10. Y.T. Zhao, S.C. Jiang, X. Zhao, J.G. Chen, Y.J. Yang, Opt. Lett. 45, 2874 (2020)

    Article  ADS  Google Scholar 

  11. J.G. Chen, Y.J. Yang, J. Chen, B. Wang, Phys. Rev. A 91, 043403 (2015)

    Article  ADS  Google Scholar 

  12. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  13. C. Jin, G.L. Wang, H. Wei, A.T. Le, C.D. Lin, Nat. Commun. 5, 4003 (2014)

    Article  ADS  Google Scholar 

  14. Y. Li, R.L.Q. Feng, Y. Qiao, Can. J. Phys. 98, 198 (2020)

    Article  ADS  Google Scholar 

  15. Y. Li, L.Q. Feng, Y. Qiao, Z. Naturforsch. A 74, 561 (2019)

    Article  ADS  Google Scholar 

  16. H. Liu, Y. Li, H. Liu, A.Y. Feng, L.Q. Feng, Y. Qiao, J. Nonlinear Opt. Phys. Mater 28, 1950037 (2019)

    Article  ADS  Google Scholar 

  17. L.Q. Feng, Y. Qiao, L. Li, Spectrosc. Lett. 54, 80 (2021)

    Article  ADS  Google Scholar 

  18. H. Liu, L.Q. Feng, Y. Qiao, X.D. Jing, Eur. Phys. J. D 75, 144 (2021)

    Article  ADS  Google Scholar 

  19. L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011)

    Article  ADS  Google Scholar 

  20. H. Liu, L.Q. Feng, Y. Qiao, Y. Li, J. Mod. Opt. 68, 267 (2021)

    Article  ADS  Google Scholar 

  21. H. Liu, X.D. Jing, Y. Qiao, J. McCain, L.Q. Feng, Mod. Phys. Lett. B 35, 2150366 (2021)

    Article  ADS  Google Scholar 

  22. Y. Li, L.Q. Feng, Y. Qiao, Chem. Phys. 527, 110497 (2019)

    Article  Google Scholar 

  23. S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008)

    Article  ADS  Google Scholar 

  24. E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016)

    Article  ADS  Google Scholar 

  25. M.F. Ciappina, J.A. Pérez-Hernández, A.S. Landsman et al., Rep. Prog. Phys. 80, 054401 (2017)

    Article  ADS  Google Scholar 

  26. L.Q. Feng, Phys. Rev. A 92, 053832 (2015)

    Article  ADS  Google Scholar 

  27. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S.D. Silvestri, M. Nisoli, Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  28. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X.W. Wang, Z.H. Chang, Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  29. Q.B. Zhang, P.X. Lu, W.Y. Hong, Q. Liao, S.Y. Wang, Phys. Rev. A 80, 033405 (2009)

    Article  ADS  Google Scholar 

  30. R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008)

    Article  ADS  Google Scholar 

  31. J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005)

    Article  ADS  Google Scholar 

  32. L.Q. Feng, H. Liu, Eur. Phys. J. D 72, 59 (2018)

    Article  ADS  Google Scholar 

  33. L.Q. Feng, J. Mccain, Y. Qiao, Laser Phys. 31, 055301 (2021)

    Article  ADS  Google Scholar 

  34. S.S. Zhou, Y.J. Yang, F.M. Guo, J.G. Chen, J. Wang, IEEE J. Quantum Electron. 56, 9000207 (2020)

    Google Scholar 

  35. Y. Qiao, D. Wu, J.G. Chen et al., Phys. Rev. A 100, 063428 (2019)

    Article  ADS  Google Scholar 

  36. L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013)

    Article  ADS  Google Scholar 

  37. L.Q. Feng, W.L. Li, H. Liu, M.H. Yuan, S.P. Yuan, T.S. Chu, Spectrosc. Lett. 47, 781 (2014)

    Article  ADS  Google Scholar 

  38. R.F. Lu, H.X. He, Y.H. Guo, K.L. Han, J. Phys. B At. Mol. Opt. Phys. 42, 225601 (2009)

    Article  ADS  Google Scholar 

  39. J. Wu, G.T. Zhang, C.L. Xia, X.S. Liu, Phys. Rev. A 82, 013411 (2010)

    Article  ADS  Google Scholar 

  40. L.Q. Feng, H. Liu, Can. J. Phys. 92, 1592 (2014)

    Article  ADS  Google Scholar 

  41. V.V. Strelkov, A.F. Sterjantov, N.Y. Shubin, V.T. Platonenko, J. Phys. B At. Mol. Opt. Phys. 39, 577 (2006)

    Article  ADS  Google Scholar 

  42. K. Ishikawa, Phys. Rev. Lett. 91, 043002 (2003)

    Article  ADS  Google Scholar 

  43. L.Q. Feng, T.S. Chu, IEEE J. Quantum Electron. 48, 1462 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported the Natural Science Foundation of Liaoning Province, China (Grants No. 2019-MS-167), the Basic Research Project of Liaoning Provincial Education Department, China (Grants No. JJL201915405), the Youth Project of Liaoning Education Department, China, and the Innovation Project of University Students, China (Grants Nos. 202110154004 and X2021057).

Author information

Authors and Affiliations

Authors

Contributions

Hang Liu, Yuning Wang, and Siqi Zhou calculated and analyzed the results of this paper.

Yan Qiao wrote the first draft.

Liqiang Feng was the corresponding author.

Corresponding author

Correspondence to Liqiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, Y., Zhou, S. et al. Chirp duration effect on high-order harmonic spectra. Eur. Phys. J. D 75, 292 (2021). https://doi.org/10.1140/epjd/s10053-021-00302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00302-5

Navigation