Skip to main content
Log in

Studies on hyperfine structure of Sc I and Sc II using Fourier-transform spectroscopy

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

New magnetic dipole hyperfine structure (HFS) constants A of Sc I and Sc II were derived by analyzing of the transition lines ranging from 3998 to 39,979 \(\hbox {cm}^{-1}\) in the Fourier-transform (FT) spectra which was recorded in the US National Solar Observatory. In this work, we determined the HFS constants for 56 levels of Sc I from 14,926.061 to 41,162.506 cm\(^{{-1}}\) and for 12 levels of Sc II from 30,815.70 to 77,387.17 cm\(^{{-1}}\). To our best knowledge, the HFS constants for 50 out of 56 levels in Sc I and for nine out of 12 levels in Sc II are reported for the first time. Our results have good agreements with the experimental values reported in the literature. Most of the estimated uncertainties are less than 10%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated during this study are included in this published article.]

References

  1. C.M. Jomaron, M.M. Dworetsky, C.S. Allen, Mon. Not. R. Astron. Soc. 303, 555 (1999)

    Article  ADS  Google Scholar 

  2. E.F. Del Peloso, K. Cunha, L. Da Silva, G.F. Porto de Mello, Astron. Astrophys. 441, 1149 (2005)

    Article  ADS  Google Scholar 

  3. R.J. Blackwell-Whitehead, J.C. Pickering, O. Pearse, G. Nave, Astrophys. J. Suppl. Ser. 157, 402 (2005)

    Article  ADS  Google Scholar 

  4. B. Thorsbro, N. Ryde, M. Schultheis, H. Hartman, R.M. Rich, M. Lomaeva, L. Origlia, H. Jönsson, Astrophys. J. 866, 52 (2018)

    Article  ADS  Google Scholar 

  5. J.E. Lawler, C.S. Hala, G. Nave, M.P. Wood, J.J. Cowan, Astrophys. J. Suppl. Ser. 241, 21 (2019)

    Article  ADS  Google Scholar 

  6. B. Thorsbro, Atoms 8, 4 (2020)

    Article  ADS  Google Scholar 

  7. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.8) January 7 (2020) (National Institute of Standards and Technology, Gaithersburg, MD, 2021). https://doi.org/10.18434/T4W30F, https://physics.nist.gov/asd

  8. G. Fricke, H. Kopfermann, S. Penselin, K. Schlüpmann, Zeitschrift fur Physik 156, 416 (1959)

  9. J.P. Desclaux, N. Bessis, Phys. Rev. A 2, 1623 (1970)

    Article  ADS  Google Scholar 

  10. W. Ertmer, B. Hofer, Z. Phys. A 276, 9 (1976)

    Article  ADS  Google Scholar 

  11. W. Zeiske, G. Meisel, H. Gebauer, B. Hofer, W. Ertmer, Phys. Lett. 55, 405 (1976)

    Article  Google Scholar 

  12. R. Singh, G.N. Rao, R.K. Thareja, J. Opt. Soc. Am. B 8, 12 (1991)

    Article  ADS  Google Scholar 

  13. A. Aboussaïd, M. Carleer, D. Hurtmans, E. Biémont, M.R. Godefroid, Phys. Scr. 53, 28 (1996)

    Article  ADS  Google Scholar 

  14. J. Bieroń, C.F. Fischer, M. Godefroid, J. Phys. B 35, 3337 (2002)

    Article  ADS  Google Scholar 

  15. G. Başar, G. Başar, F. Gülay Acar, I.K. Öztürk, S. Kröger, Phys. Scr. 69, 189 (2004)

    Article  ADS  Google Scholar 

  16. K. Ipek, F. Öztürk, G. Acar, G. Başar, G. Başar, S. Kröger, Phys. Scr. 75, 624 (2007)

    Article  ADS  Google Scholar 

  17. A. Krzykowski, D. Stefańska, J. Phys. B 41, 055001 (2008)

    Article  ADS  Google Scholar 

  18. A. Arnesen, R. Hallin, C. Nordling, Ö. Staaf, L. Ward, B. Jelénkovic, M. Kisielinski, L. Lundin, S. Mannervik, Astron. Astrophys. 106, 327 (1982)

    ADS  Google Scholar 

  19. L. Young, J. Childs, T. Dinneen, C. Kurtz, H.G. Berry, L. Engström, K.T. Cheng, Phys. Rev. A 37, 4213 (1988)

    Article  ADS  Google Scholar 

  20. P. Villemoes, R. van Leeuwen, A. Arnesen, F. Heijkenskjöld, A. Kastberg, M.O. Larsson, S.A. Kotochigova, Phys. Rev. A 45, 6241 (1992)

    Article  ADS  Google Scholar 

  21. N.B. Mansour, T.P. Dinneen, L. Young, Nucl. Instrum. Methods Phys. Res. B(40/41), 252 (1989)

    Article  ADS  Google Scholar 

  22. N.B. Mansour, T. Dinneen, L. Young, K.T. Cheng, Phys. Rev. A 39, 5762 (1989)

    Article  ADS  Google Scholar 

  23. J. Ruczkowski, M. Elantkowska, J. Dembczyński, J. Quant. Spectrosc. Radiat. Transf. 145, 20 (2014)

    Article  ADS  Google Scholar 

  24. G.K. Woodgate, Elementary Atomic Structure, 2nd edn. (Clarendon Press, Oxford, 1980), p. 184

    Google Scholar 

  25. R.D. Cowan, The Theory of Atomic Structure and Spectra (Univ California Press, Berkeley, 1981), p. 147

    Book  Google Scholar 

  26. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)

    Article  MathSciNet  Google Scholar 

  27. J. Sugar, C. Corliss, Atomic Energy Levels of the Iron-Period Elements: Potassium Through Nickel (American Chemical Society, Washington, 1985)

    Google Scholar 

  28. J. Dembczyński, M. Elantkowska, J. Ruczkowski, D. Stefańska, Atom. Data Nucl. Data Tables 93, 149 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U1832114) and Science and Technology Development Planning Project of Jilin Province (Grant No. 20180101239JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Zhenwen Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Fang, D., Fu, H. et al. Studies on hyperfine structure of Sc I and Sc II using Fourier-transform spectroscopy. Eur. Phys. J. D 75, 284 (2021). https://doi.org/10.1140/epjd/s10053-021-00288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00288-0

Navigation