Skip to main content
Log in

Ion front acceleration in collisional nonthermal plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A three fluid-model consisting of electrons, ions, and neutral atoms including source terms of ionization and recombination is used to study the ion front evolution in an intense-laser created plasma. A parametric study for the ion front profiles as a function of electron nonthermality and trapping in the presence of different source terms is performed. The numerical results show that the ion front profiles are significantly affected by the nonthermal and trapping effects. In the case of ionization alone, these effects favor the stability of the ion acceleration process interpreted from the plateau appearing in the ion front profiles, whereas the case of recombination alone shows a more important ion beam energy. On the other hand, taking into account both ionization and recombination processes in the same nonequilibrium plasma model is more adequate to obtain highly monoenergetic ion beams. In addition, the same study is performed for three different target materials, H, C, and Al. It is found that proton and carbon ion energy profiles present a good trend and the same ion front position behaviors, unlike aluminum ion which show a slower acceleration. This work is motivated to improve the understanding and predictive capability of electron nonthermality, trapping and collision effects on the ion front profiles in high-intensity laser-plasma acceleration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Plasma Phys. 8, 542 (2001).

    Article  Google Scholar 

  2. M. Borghesi, D.H. Campbell, A. Schiavi, M.G. Haines, O. Willi, A.J. Mackinnon, P. Patel, L.A. Gizzi, M. Galimberti, R.J. Clarke, F. Pegoraro, H. Ruhl, S.V. Bulanov, Plasma Phys. 9, 2214 (2002).

    Article  Google Scholar 

  3. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Nature 412, 798 (2001).

    Article  ADS  Google Scholar 

  4. S.S. Bulanov, A. Brantov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, K. Krushelnick, D.W. Litzenberg, A. Maksimchuk, Med. Phys. 35, 1770 (2008).

    Article  Google Scholar 

  5. J.E. Crow, P.L. Auer, J.E. Allen, Plasma Phys. 14, 65 (1975).

    Article  ADS  Google Scholar 

  6. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).

    Article  ADS  Google Scholar 

  7. D. Bennaceur-Doumaz, D. Bara, M. Djebli, Laser Part. Beams 33, 723 (2015).

    Article  ADS  Google Scholar 

  8. A.V. Gurevich, A.P. Meshcherkin, Sov. Phys. JETP 53, 51 (1981).

    Google Scholar 

  9. A.V. Baitin, K.M. Kuzanyan, J. Plasma Phys. 59, 83 (1998).

    Article  ADS  Google Scholar 

  10. D. Bennaceur-Doumaz, D. Bara, E. Benkhelifa, M. Djebli, J. Appl. Phys. 117, 043303 (2015).

    Article  ADS  Google Scholar 

  11. R. Shokoohi, E. Mohammadi Razi, Phys. Scr. 93, 095601 (2018).

    Article  ADS  Google Scholar 

  12. C. Thaury, P. Mora, J.C. Adam, A. Héron, Phys. Plasmas 16, 093104 (2009).

    Article  ADS  Google Scholar 

  13. M.K. Srivastava, B.K. Sinha, S.V. Lawande, Phys. Fluids 31, 394 (1988).

    Article  ADS  Google Scholar 

  14. Y.V. Medvedev, Plasma Phys. Control. Fusion 53, 125007 (2011).

    Article  ADS  Google Scholar 

  15. J.E. Allen, M. Perego, Phys. Plasmas 21, 034504 (2014).

    Article  ADS  Google Scholar 

  16. M. Murakami, Y.G. Kang, K. Nishihara, S. Fujioka, H. Nishimura, Phys. Plasmas 12, 062706 (2005).

    Article  ADS  Google Scholar 

  17. M. Murakami, M. Basco, Phys. Plasmas 13, 012105 (2006).

    Article  ADS  Google Scholar 

  18. A. Beck, F. Pantellini, Plasma Phys. Control. Fusion 51, 015004 (2009).

    Article  ADS  Google Scholar 

  19. A.J. Kemp, R.E.W. Pfund, J. Meyer-ter-Vehn, Phys. Plasmas 11, 5648 (2004).

    Article  ADS  Google Scholar 

  20. H.-K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, R.W. Lee, HEDP 1, 3 (2005).

    ADS  Google Scholar 

  21. S. Guot, L. Mei, Phys. Plasmas 21, 112303 (2014).

    Article  ADS  Google Scholar 

  22. S. Guot, L. Mei, Y. He, Y. Li, Plasma Phys. Control. Fusion 58, 025014 (2016).

    Article  ADS  Google Scholar 

  23. T.V. Losseva, S.I. Popel, A.P. Golub, Y.N. Izvekova, P.K. Shukla, Phys. Plasmas 19, 013703 (2012).

    Article  ADS  Google Scholar 

  24. M.F. Mahboub, D. Bara, D. Bennaceur-Doumaz, M. Djebli, Phys. Plasmas 26, 023101 (2019).

    Article  ADS  Google Scholar 

  25. D. Bara, M. Djebli, D. Bennaceur-Doumaz, Laser Part. Beams 32, 391 (2014).

    Article  ADS  Google Scholar 

  26. K. Annou, D. Bara, D. Bennaceur-Doumaz, J. Plasma Phys. 81, 905810318 (2015).

    Article  Google Scholar 

  27. T. Zhi-Xin, H. Yong-Sheng, L. Xiao-Fei, L. Jian-Xin, D. Xiao- Jiao, W. Lei-Jian, Y. Da-Wei, G. Shi-Lun, W. Nai-Yan, Chin. Phys. B 19, 055201 (2010).

    Article  ADS  Google Scholar 

  28. H. Kishimura, H. Morishita, Y.H. Okano, Y. Okano, Y. Hironaka, K. Kondo, K.G. Nakamura, Y. Oishi, K. Nemoto, Appl. Phys. Lett. 85, 2736 (2004).

    Article  ADS  Google Scholar 

  29. L. Torrisi, Laser Part. Beams 32, 383 (2014).

    Article  ADS  Google Scholar 

  30. L. Torrisi, Nukleonika 60, 207 (2015).

    Article  Google Scholar 

  31. L. Torrisi, Phys. Plasmas 24, 023111 (2017).

    Article  ADS  Google Scholar 

  32. E.T. Meier, U. Shumlak, Phys. Plasmas 19, 072508 (2012).

    Article  ADS  Google Scholar 

  33. B.M. Smirnov, Phys. Atoms Ions (Springer-Verlag, New York, Berlin, Heidelberg, 2003).

  34. L. Ni, V.S. Lukin, N.A. Murphy, Astrophys. J. 852, 95 (2018).

    Article  ADS  Google Scholar 

  35. G.S. Voronov, At. Data Nucl. Data Tables 65, 35 (1997).

    Article  Google Scholar 

  36. B.T. Draine, W.G. Roberge, A. Dalgarno, ApJ 264, 485 (1983).

    Article  ADS  Google Scholar 

  37. J.E. Leake, V.S. Lukin, M.G. Linton, E.T. Meier, Astrophys. J. 109, 760 (2012).

    Google Scholar 

  38. J.I. Apinaniz, A.P. Conde, R.M.P. de Mendiola, Eur. Phys. J. D 69, 265 (2015).

    Article  ADS  Google Scholar 

  39. R. Plasil, I. Korolov, T. Kotrik, P. Dohnal, G. Bano, Z. Donko, J. Glosik, Eur. Phys. J. D 54, 391 (2009).

    Article  ADS  Google Scholar 

  40. M. Masek, K. Rohlena, Eur. Phys. J. D 56, 79 (2010).

    Article  ADS  Google Scholar 

  41. L. Pieroni, S.E. Segre, Phys. Rev. Lett. 34, 928 (1975).

    Article  ADS  Google Scholar 

  42. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, J. Appl. Phys. 73, 3657 (1993).

    Article  ADS  Google Scholar 

  43. T. Toncian, C. Wang, E. McCary, A. Meadows, A.V. Arefiev, J. Blakeney, K. Serratto, D. Kuk, C. Chester, R. Roycroft, L. Gao, H. Fu, X.Q. Yan, J. Schreiber, I. Pomerantz, A. Bernstein, H. Quevedo, G. Dyer, B.M. Hegelich, Matter Radiat, Extremes 1, 82 (2016).

    Google Scholar 

  44. S.N. Razavinia, M. Ghorbanalilu, Phys. Rev. Accel. Beams 22, 111305 (2019).

    Article  ADS  Google Scholar 

  45. N. Kumar, A. Pukhov, Phys. Plasmas 15, 053103 (2008).

    Article  ADS  Google Scholar 

  46. S.-Y. Chen, M. Krishnan, A. Maksimchuk, R. Wagner, D. Umstadter, Phys. Plasmas 6, 12 (1999).

    Article  MathSciNet  Google Scholar 

  47. T. Nedelea, B. Briehl, H.M. Urbassek, J. Plasma Phys. 71, 589 (2005).

    Article  ADS  Google Scholar 

  48. M. Tayyab, S. Bagchi, J.A. Chakera, D.K. Avasthi, R. Ramis, A. Upadhyay, B. Ramakrishna, T. Mandal, P.A. Naik, Phys. Plasmas 25, 123102 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djemai Bara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bara, D., Mahboub, M.F. & Bennaceur-Doumaz, D. Ion front acceleration in collisional nonthermal plasma. Eur. Phys. J. D 74, 224 (2020). https://doi.org/10.1140/epjd/e2020-10087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10087-6

Keywords

Navigation