Skip to main content
Log in

The effect of negative ion population on dust acoustic wave propagation in a self gravitating Lorentzian dusty plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A theoretical investigation into the effect of negative ion population on dust acoustic wave propagation is presented in a self-gravitating dusty plasma consisting of electrons, negative ions, positive ions, and charged dust grains. The kappa distributed suprathermal electrons and Maxwellian ions are assumed. The inertial dust grain is assumed to have a variable charge which is negative or positive in the equilibrium condition depending on the population density of negative ion. A general fluid dispersion relation is derived by using continuity, momentum, and Poissons equations for electrostatic potential as well as gravitational potential. The analysis shows that the higher negative ion and suprathermal electron population favored the reduction of the decay rate when the equilibrium dust charge is negative. On the other hand, when the negative ion population increases, the equilibrium dust charge becomes positive. In this case, the negative ion and suprathermal electron population enhance the decay rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Massey, Negative Ions, 3rd ed. (Cambridge University Press, Cambridge, 1976)

  2. W. Swider, Electron loss and the determination of electron concentrations in the D-region, in Ionospheric modeling (Birkhauser, Basel, 1988), pp. 403–414

  3. P.H. Chaizy, H. Reme, J.A. Sauvaud, C. Duston, R.P. Lin, E. Larson, D.L. Mitchell, K.A. Anderson, C.W. Carlson, A. Korth, D.A. Mendis, Nature (London) 349, 393 (1991)

    Article  ADS  Google Scholar 

  4. R.L. Merlino, S.H. Kim, J. Chem. Phys. 129, 224310 (2008)

    Article  ADS  Google Scholar 

  5. S.H. Kim, R.L. Merlino, Phys. Rev. E 76, 035401(R) (2007)

    Article  ADS  Google Scholar 

  6. A.A. Mamun, P.K. Shukla, Phys. Plasmas 10, 1518 (2003)

    Article  ADS  Google Scholar 

  7. N. D’Angelo, J. Phys. D Appl. Phys. 37, 860 (2004)

    Article  ADS  Google Scholar 

  8. S.H. Kim, R.L. Merlino, Phys. Plasmas 13, 052118 (2006)

    Article  ADS  Google Scholar 

  9. J.H. Jeans, Philos. Trans. R. Soc. (London) 199, 1 (1901)

    ADS  Google Scholar 

  10. B.P. Pandey, K. Avinash, C.B. Dwivedi, Phys. Rev. E 49, 5599 (1994)

    Article  ADS  Google Scholar 

  11. F. Verheest, P. Shukla, N. Rao, P. Meuris, J. Plasma Phys. 58, 163 (1997)

    Article  ADS  Google Scholar 

  12. P. Shukla, F. Verheest, Astrophys. Space Sci. 262, 157 (1998)

    Article  ADS  Google Scholar 

  13. R.L. Mace, F. Verheest, M.A. Hellberg, Phys. Lett. A 237, 146 (1998)

    Article  ADS  Google Scholar 

  14. B.P. Pandey, G.S. Lakhina, V. Krishan, Phys. Rev. E 60, 7412 (1999)

    Article  ADS  Google Scholar 

  15. V.V. Yaroshenko, G. Jacobs, F. Verheest, Phys. Rev. E 64, 036401 (2001)

    Article  ADS  Google Scholar 

  16. F. Verheest, P.K. Shukla, G. Jacobs, V.V. Yaroshenko, Phys. Rev. E 68, 027402 (2003)

    Article  ADS  Google Scholar 

  17. G.L. Delzanno, G. Lapenta, Phys. Rev. Lett. 94, 175005 (2005)

    Article  ADS  Google Scholar 

  18. P.K. Shukla, L. Stenflo, Proc. R. Soc. A 462, 403 (2005)

    Article  ADS  Google Scholar 

  19. S. Pillay, F. Verheest, J. Plasma Phys. 71, 177 (2005)

    Article  ADS  Google Scholar 

  20. S. Ali, P.K. Shukla, Phys. Scr. 73, 359 (2006)

    Article  ADS  Google Scholar 

  21. S. Sarkar, B.I. Roy, M. Khan, M.R. Gupta, Phys. Scr. 73, 506 (2006)

    Article  ADS  Google Scholar 

  22. B. Roy, S. Sarkar, M. Khan, M.R. Gupta, Phys. Plasmas 13, 102904 (2006)

    Article  ADS  Google Scholar 

  23. S. Sarkar, B. Roy, S. Maity, M. Khan, M.R. Gupta, Phys. Plasmas 14, 042106 (2007)

    Article  ADS  Google Scholar 

  24. B. Roy, S. Maity, S. Sarkar, M. Khan, Phys. Scr. 2008, 014046 (2008)

    Article  Google Scholar 

  25. S. Sarkar, S. Maity, B. Roy, M. Khan, Phys. Scr. 81, 025504 (2010)

    Article  ADS  Google Scholar 

  26. R.P. Prajapati, Phys. Lett. A 375, 2624 (2011)

    Article  ADS  Google Scholar 

  27. S. Sarkar, S. Maity, S. Banerjee, Phys. Scr. 84, 045501 (2011)

    Article  ADS  Google Scholar 

  28. G. Livadiotis, J. Phys.: Conf. Ser. 900, 012014 (2017)

    Google Scholar 

  29. S.J. Bame, M.D. Montgomery, A.J. Hundhause, Geophys. J. Res. 73, 4999 (1968)

    Article  ADS  Google Scholar 

  30. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Article  ADS  Google Scholar 

  31. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  32. V. Pierrard, M. Lazar, Sol. Phys. 267, 153 (2010)

    Article  ADS  Google Scholar 

  33. Y.Z. Qian, H. Chen, S.Q. Liu, Phys. Plasmas 21, 113703 (2014)

    Article  ADS  Google Scholar 

  34. Y.Z. Qian, H. Chen, S.Q. Liu, Phys. Scr. 90, 045602 (2015)

    Article  ADS  Google Scholar 

  35. H. Hakimi Pajouh, N. Afshari, Phys. Lett. A 380, 3810 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. R. Prangé, J.F. Crifo, Geophys. Res. Lett. 4, 141 (1977)

    Article  ADS  Google Scholar 

  37. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 15, 123705 (2008)

    Article  ADS  Google Scholar 

  38. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  39. V.W. Chow, D.A. Mendis, M. Rosenberg, J. Geophys. Res. 98, 19065 (1993)

    Article  ADS  Google Scholar 

  40. N.A. Krall, A.W. Trivelpiece, in Principles of Plasma Physics (McGraw-Hill, 1973), pp. 458–462

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Paul.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Denra, R. & Sarkar, S. The effect of negative ion population on dust acoustic wave propagation in a self gravitating Lorentzian dusty plasma. Eur. Phys. J. D 74, 131 (2020). https://doi.org/10.1140/epjd/e2020-100584-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100584-3

Keywords

Navigation