Skip to main content
Log in

Monte Carlo simulation of RF breakdown in oxygen – the role of attachment

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Breakdown in oxygen, in external radio-frequency (RF) electric field is analyzed by employing a Monte Carlo simulation (MCS). Results were obtained for 13.56 MHz and distance between electrodes of 15 mm. Physical background of an oxygen RF breakdown is explained by observing time-resolved spatial distributions of electron concentration, mean energy, elastic scattering rate, ionization rate and attachment. The role of attachment is investigated in cases when these processes are included and when they are not. Especially influence of the attachment is highlighted by comparing oxygen and argon breakdown-voltage curves and spatial profiles. The electron losses induced by attachment extend the motion of the electron prebreakdown swarm much closer to electrodes to achieve a greater production; hence, spatial profiles at high values of the product pd where p is the pressure and d is the gap between electrodes, become more similar to those at the minimum of the breakdown curve. The most striking difference between the breakdown curves in argon and in oxygen is in the high increase of the breakdown voltage for high pd in oxygen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Adamovich, S.D. Baalrud, A. Bogaerts, P.J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J.G. Eden, P. Favia, D.B. Graves, S. Hamaguchi, G. Hieftje, M. Hori, I.D. Kaganovich, U. Kortshagen, M.J. Kushner, N.J. Mason, S. Mazouffre, S. Mededovic Thagard, H.-R. Metelmann, A. Mizuno, E. Moreau, A.B. Murphy, B.A. Niemira, G.S. Oehrlein, Z.Lj Petrović, L.C. Pitchford, Y.-K. Pu, S. Rauf, O. Sakai, S. Samukawa, S. Starikovskaia, J. Tennyson, K. Terashima, M.M. van de Turner, C.M.M. Sanden, A. Vardelle, J. Phys. D: Appl. Phys. 50, 323001 (2017).

    Article  Google Scholar 

  2. T. Makabe, Z.Lj Petrović, in Plasma Electronics: Applications in Microelectronic Device Fabrication. 2nd ed. (CRC Taylor & Francis Group, Boca Raton, USA, 2015).

  3. N. Puač, N. Škoro, K. Spasić, S. Živković, M. Milutinović, G. Malović, Z.Lj Petrović, Plasma Process Polym. 15, e1700082 (2017).

    Article  Google Scholar 

  4. N. Puač, M. Gherardi, M. Shiratani, Plasma Process Polym. 15, e1700174 (2018).

    Article  Google Scholar 

  5. Z. Donko, Plasma Sourc. Sci. Tech. 20, 024001 (2011).

    Article  ADS  Google Scholar 

  6. M.J. Kushner, J. Phys. D: Appl. Phys. 42, 194013 (2009).

    Article  ADS  Google Scholar 

  7. M. Savić, M. Radmilovic-Radjenovic, M. Šuvakov, S. Marjanović, D. Marić, Z.Lj Petrović, IEEE Trans. Plasma Sci. 39, 2556 (2011).

    Article  ADS  Google Scholar 

  8. M. Puač, D. Marić, M. Radmilović-Radjenović, M. Šuvakova, Z.Lj Petrović, Plasma Sources Sci. Technol. 27, 075013 (2018).

    Article  ADS  Google Scholar 

  9. I. Korolov, A. Derzsi, Z. Donko, J. Phys. D: Appl. Phys. 47, 475202 (2014).

    Article  ADS  Google Scholar 

  10. I. Korolov, Z. Donko, Phys. Plasmas 22, 093501 (2015).

    Article  ADS  Google Scholar 

  11. T. Holstein, Phys. Rev. 70, 367 (1946).

    Article  ADS  Google Scholar 

  12. H. Margenau, Phys. Rev. 73, 297 (1948).

    Article  ADS  Google Scholar 

  13. H. Margenau, L.M. Hartman, Phys. Rev. 73, 309 (1948).

    Article  ADS  Google Scholar 

  14. H. Margenau, Phys. Rev. 73, 326 (1948).

    Article  ADS  Google Scholar 

  15. L.M. Hartman, Phys. Rev. 73, 316 (1948).

    Article  ADS  Google Scholar 

  16. E.W. Gill, A. von Engel, Proc. R. Soc. A 192, 446 (1948).

    ADS  Google Scholar 

  17. E.W. Gill, A. von Engel, Proc. R. Soc. A 197, 107 (1949).

    ADS  Google Scholar 

  18. V.A. Lisovskiy, V.D. Yegorenkov, J. Phys. D: Appl. Phys. 31, 3349 (1998).

    Article  ADS  Google Scholar 

  19. Z.Lj. Petrović, A. Orević, J. Petrović, J. Sivoš, M. Puać, G. Malović, D. Marić, in 82nd IUVSTA Workshop (Okinawa, Japan, 2017), p. O2.

  20. J. Petrović, A. Orevi, D. Marić, Z.Lj Petrović, in XXIV ESCAMPIG (Scotland, Glasgow, 2018), p. 381.

  21. Y. Itikawa, J. Phys. Chem. Ref. Data 38, 1 (2009).

    Article  ADS  Google Scholar 

  22. Z. Ristivojevic, Z.Lj. Petrović, Plasma Sources Sci. Technol. 21, 035001 (2012).

    Article  ADS  Google Scholar 

  23. Z.Lj. Petrović, S. Bzenic, J. Jovanovic, S. Durovic, J. Phys. D: Appl. Phys. 28, 2287 (1995).

    Article  ADS  Google Scholar 

  24. A.V. Phelps, Z.Lj. Petrović, Plasma Sources Sci. Technol. 8, R21 (1999).

    Article  ADS  Google Scholar 

  25. PHELPS database, www.lxcat.net (Retrieved on May 29, 2015)

  26. R.D. White, R.E. Robson, K.F. Ness, T. Makabe, J. Phys. D: Appl. Phys. 38, 997 (2005).

    Article  ADS  Google Scholar 

  27. S. Dujko, R.D. White, Z.Lj Petrović, R.E. Robson, Plasma Sources Sci. Technol. 20, 024013 (2011).

    Article  ADS  Google Scholar 

  28. S. Dujko, U. Ebert, R.D. White, Z.Lj Petrović, Jpn. J. Appl. Phys. 50, 08JC01 (2011).

    Article  Google Scholar 

  29. V. Lisovkiy, J.-P. Booth, K. Landry, D. Douai, J. Phys. D: Appl. Phys. 39, 660 (2006).

    Article  ADS  Google Scholar 

  30. K. Maeshige, G. Washio, T. Yagisawa, T. Makabe, J. Appl. Phys. 91, 9494 (2002).

    Article  ADS  Google Scholar 

  31. T. Ohmori, T.K. Goto, T. Makabe, Appl. Phys. Lett. 83, 4637 (2003).

    Article  ADS  Google Scholar 

  32. N. Škoro, N. Puač, S. Živković, D. Krstić-Milošević, U. Cvelbar, G. Malović, Z.Lj Petrović, Eur. Phys. J. D 72, 2 (2018).

    Article  ADS  Google Scholar 

  33. E. Traldi, M. Boselli, E. Simoncelli, A. Stancampiano, M. Gherardi, V. Colombo, G.S. Settles, EPJ Tech. Instrum. 5, 4 (2018).

    Article  Google Scholar 

  34. M.M. Turner, A. Derzsi, Z. Donko, S.J. Kelly, T. Lafleur, T. Massenbrock, Phys. Plasmas 20, 013507 (2013).

    Article  ADS  Google Scholar 

  35. Z. Donko, Phys. Rev. E 57, 7126 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Puač.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puač, M., Đorđević, A. & Petrović, Z.L. Monte Carlo simulation of RF breakdown in oxygen – the role of attachment. Eur. Phys. J. D 74, 72 (2020). https://doi.org/10.1140/epjd/e2020-100526-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100526-1

Navigation