Skip to main content
Log in

Geometric phase shift sensitivity in an area chirped array of atom interferometers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Measuring geometric phase shifts has various applications in both quantum and classical interferometry such as measuring acceleration, distances, rotation and magnetic flux. Theoretical analysis of coupled ring arrays has been shown to be a promising design for creating small inertial rotation sensors on atom chips. In this paper we build on the theoretical models of transmission of matter waves through an area chirped array of ring interferometers to determine phase regions of the transmission that exhibit high sensitivity to geometric phase shifts,these regions are indicated by sharp transmission resonances. We calculate the slopes of transmission resonances for a range of values for two parameters, the chirp factor γ and the product of the wave number and ring circumference kL, we look at the behavior of the slopes of these transmission resonances for defined ranges of kL and γ to see in search of transmission resonances with extreme slopes. We find transmission resonances with sensitivities to geometric phase shifts that exceed those found in previous models of area chirped arrays by several orders of magnitude. The area chirp is applied such that the geometric phase shifts (θGP) in each ring of the array can be expressed in terms of the geometric phase shift in the reference ring of the array, this enables the transmission function T(θGP) to be calculated in terms of the phase shift of a single ring. We investigate T(θGP) for various ring sizes, wave numbers, and chirp factor and look for values of these parameters that lead to sharp transmission resonances in T(θGP). We calculate the sensitivities of rotation via the Sagnac effect and magnetic flux via Aharonov Bohm effect based on the sensitivity of the transmission resonances found in our transmission functions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009)

    Article  ADS  Google Scholar 

  2. G.M. Tino, M.A. Kasevich, in Atom Interferometry (IOS Press 2014) Vol.188

  3. C.L. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  Google Scholar 

  4. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, Phys. Rev. Lett. 98, 111102 (2007)

    Article  ADS  Google Scholar 

  5. P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, J. Khoury, Science 349, 849 (2015)

    Article  ADS  Google Scholar 

  6. J.M. Mcguirk, G. Foster, J. Fixler, M. Snadden, M. Kasevich, Phys. Rev. A 65, 033608 (2002)

    Article  ADS  Google Scholar 

  7. M. Olsen, A. Bradley, Phys. Rev. A 91, 043635 (2015)

    Article  ADS  Google Scholar 

  8. L. Amico, G. Birkl, M. Boshier, L.C. Kwek, New J. Phys. 19, 020201 (2017)

    Article  ADS  Google Scholar 

  9. B. Barrett, R. Geiger, I. Dutta, M. Meunier, B. Canuel, A. Gauguet, P. Bouyer, A. Landragin, C. R. Phys. 15, 875 (2014)

    Article  ADS  Google Scholar 

  10. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  11. H.C. Lefevre, The Fiber-optic Gyroscope (Artech House, 2014)

  12. W.W. Chow, J. Gea-Banacloche, L.M. Pedrotti, V.E. Sanders, W. Schleich, M.O. Scully, Rev. Mod. Phys. 57, 61 (1985)

    Article  ADS  Google Scholar 

  13. C. Ciminelli, F. DellOlio, C.E. Campanella, M.N. Armenise, Adv. Opt. Photonics 2, 370 (2010)

    Article  ADS  Google Scholar 

  14. D. Durfee, Y. Shaham, M. Kasevich, Phys. Rev. Lett. 97, 240801 (2006)

    Article  ADS  Google Scholar 

  15. T. Gustavson, A. Landragin, M. Kasevich, Classical Quantum Gravity 17, 2385 (2000)

    Article  ADS  Google Scholar 

  16. C. Luo, J. Huang, X. Zhang, C. Lee, Phys. Rev. A 95, 023608 (2017)

    Article  ADS  Google Scholar 

  17. V. Chandrasekhar, M. Rooks, S. Wind, D. Prober, Phys. Rev. Lett. 55, 1610 (1985)

    Article  ADS  Google Scholar 

  18. J.B. Xia, Phys. Rev. B 45, 3593 (1992)

    Article  ADS  Google Scholar 

  19. W. Cui, S. Wu, G. Jin, X. Zhao, Y. Ma, Eur. Phys. J. B 59, 47 (2007)

    Article  ADS  Google Scholar 

  20. W. Campbell, P. Hamilton, J. Phys. B: At. Mol. Opt. Phys. 50, 064002 (2017)

    Article  ADS  Google Scholar 

  21. B. Neyenhuis, D. Christensen, D. Durfee, Phys. Rev. Lett. 99, 200401 (2007)

    Article  ADS  Google Scholar 

  22. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. König, A. Tschetschetkin, E. Hankiewicz, J. Sinova, V. Hock, V. Daumer, M. Schäfer, C. Becker, H. Buhmann, L. Molenkamp, Phys. Rev. Lett. 96, 076804 (2006)

    Article  ADS  Google Scholar 

  24. J. Gillot, S. Lepoutre, A. Gauguet, J. Vigué, M. Büchner, Eur. Phys. J. D 68, 168 (2014)

    Article  ADS  Google Scholar 

  25. A. Görlitz, B. Schuh, A. Weis, Phys. Rev. A 51, R4305 (1995)

    Article  ADS  Google Scholar 

  26. K. Zeiske, G. Zinner, F. Riehle, J. Helmcke, Appl. Phys. B 60, 205 (1995)

    Article  ADS  Google Scholar 

  27. J.J. Sakurai, Phys. Rev. D 21, 2993 (1980)

    Article  ADS  Google Scholar 

  28. C.P. Search, J.R.E. Toland, M. Zivkovic, Phys. Rev. A 79, 053607 (2009)

    Article  ADS  Google Scholar 

  29. J.R.E. Toland, S.J. Arouh, C.J. Diggins, C. Sorrentino, C.P. Search, Phys. Rev. A 85, 043614 (2012)

    Article  ADS  Google Scholar 

  30. D.J. Dayon, J.R. Toland, et al., J. Phys. B: At. Mol. Opt. Phys. 43, 115302 (2010)

    Article  ADS  Google Scholar 

  31. M. Keil, O. Amit, S. Zhou, D. Groswasser, Y. Japha, R. Folman, J. Mod. Opt. 63, 1840 (2016)

    Article  ADS  Google Scholar 

  32. S. Kim, H. Yu, S. Gang, J. Kim, Appl. Phys. B 123, 154 (2017)

    Article  ADS  Google Scholar 

  33. T. Müller, X. Wu, A. Mohan, A. Eyvazov, Y. Wu, R. Dumke, New J. Phys. 10, 073006 (2008)

    Article  ADS  Google Scholar 

  34. V. Giovannetti, S. Lloyd, L. Maccone, Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  35. C. Slowe, L. Vernac, L.V. Hau, Rev. Sci. Instrum. 76, 103101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. E. Toland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toland, J.R.E., Campo, C., Rivera, T. et al. Geometric phase shift sensitivity in an area chirped array of atom interferometers. Eur. Phys. J. D 74, 24 (2020). https://doi.org/10.1140/epjd/e2019-90436-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90436-2

Keywords

Navigation