Skip to main content
Log in

Three-dimensional modified Korteweg-de Vries equation in a magnetised relativistic plasma with positron beam and vortex-like electron distribution

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The nonlinear features of Ion Acoustic (IA) waves are studied in a fully relativistic three-dimensional (3-D) plasma system with consideration of effect of both positron beam and trapped electrons. We consider a set of 3-D magnetised hydrodynamic equations with pressure expansion for our plasma model along with kinetic Vlasov equation for electrons. Applying the perturbative expansion technique, a Modified Korteweg-de Vries (m-KdV)-like equation is derived, exhibiting the evolution of small amplitude IA waves in plasma. The modified coefficient of nonlinear term in K-dV equation has arrived due to impact of vortex-like distribution of electrons. An analytical and numerical investigation of the nonlinear evolution equations is exhibited with external magnetic field effects, the time derivative pressure expansion as well as other parameters like relativistic effect, mass variation, beam velocity and temperature effect have been taken into consideration. The presence of vortex like trapped electron distribution and positron beam governs the influence of soliton structure quite significantly. The present result should help us to understand the experiments that involve particle trapping and also the salient features of astrophysical environment like ionospheric plasma together with situations in plasma describing the electrostatic solitary structures usually seen in antimatter-related environment in interplanetary region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Berk, K.V. Roberts, Phys. Fluids 10, 1595 (1967)

    ADS  Google Scholar 

  2. R.L. Morse, C.W. Nielson, Phys. Rev. Lett. 23, 1087 (1969)

    ADS  Google Scholar 

  3. N.C. Adhikary, M.K. Deka, A.N. Dev, J. Sarmah, Phys. Plasmas 21, 083703 (2014)

    ADS  Google Scholar 

  4. N.C. Adhikary, A.P. Misra, M.K. Deka, A.N. Dev, Phys. Plasmas 24, 073703 (2017)

    ADS  Google Scholar 

  5. M. Kako, T. Tanuiti, T. Watanabe, J. Phys. Soc. Jpn. 31, 1820 (1971)

    ADS  Google Scholar 

  6. I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)

    ADS  MathSciNet  Google Scholar 

  7. N. Iwamoto, Phys. Rev. E 47, 604 (1993)

    ADS  Google Scholar 

  8. G.P. Zank, R.G. Greaves, Phys. Rev. E 51, 6079 (1995)

    ADS  Google Scholar 

  9. H.G. Abdelwahed, E.K. El-Shewy, A.A. Mahmoud, Chin. Phys. Lett. 34, 035202 (2007)

    ADS  Google Scholar 

  10. A.N. Dev, Chin. Phys. B 26, 025203 (2017)

    ADS  Google Scholar 

  11. J. Duris, et al., Nat. Commun. 5, 4928 (2014)

    ADS  Google Scholar 

  12. R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C.-E. Chen, X. He, X. Yan, Nat. Sci. Rep. 5, 15499 (2015)

    ADS  Google Scholar 

  13. P. Chen, J.M. Dawson, R.W. Hu, T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985)

    ADS  Google Scholar 

  14. E. Hemsing, A. Knyazik, F. O’Shea, A. Marinelli, P. Musumeci, O. Williams, S. Tochitsky, J.B. Rosenzweig, Appl. Phys. Lett. 100, 091110 (2012)

    ADS  Google Scholar 

  15. C. Joshi, T. Katsouleas, J.M. Dawson, Y.T. Yan, J.M. Slater, IEEE J. Quantum Electron. 23, 1571 (1987)

    ADS  Google Scholar 

  16. R. Fedele, V.G. Vaccaro, G. Miano, Phys. Scr. T30, 192 (1990)

    ADS  Google Scholar 

  17. R.L. Williams, C.E. Clayton, C. Joshi, T.C. Katsouleas, IEEE Trans. Plasma Sci. 21, 156 (1993)

    ADS  Google Scholar 

  18. X. An, B. Van Compernolle, J. Bortnik, R.M. Thorne, L. Chen, W. Li, Geophys. Res. Lett. 43, 2413 (2016)

    ADS  Google Scholar 

  19. S.M. Mahajan, F.A. Asenjo, J. Plasma Phys. 83, 905830101 (2017)

    Google Scholar 

  20. S.A. Shan, S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 20, 082104 (2013)

    ADS  Google Scholar 

  21. A.V. Gurevich, Sov. Phys. JETP 26, 575 (1968), http://www.jetp.ac.ru/cgi-bin/e/index/e/26/3/p575?a=list

    ADS  Google Scholar 

  22. H.L. Berk, C.E. Nielsen, K.V. Roberts, Phys. Fluids 13, 980 (1970)

    ADS  Google Scholar 

  23. S.A. Shan, S.A. El-Tantawy, Phys. Plasmas 23, 072112 (2016)

    ADS  Google Scholar 

  24. Y.H. Alfven, P. Carlqvist, Sol. Phys. 1, 220 (1967)

    ADS  Google Scholar 

  25. J. Arons, Space Sci. Rev. 24, 417 (1979)

    ADS  Google Scholar 

  26. T. Tajima, T. Tanuiti, Phys. Rev. A 42, 3587 (1990)

    ADS  Google Scholar 

  27. G.C. Das, S.N. Paul, Phys. Fluids 28, 823 (1985)

    ADS  Google Scholar 

  28. H.H. Kuehl, C.Y. Zhang, Phys. Fluids B 3, 26 (1991)

    ADS  Google Scholar 

  29. D. Jovanovic, R. Fedele, M. Belic, S.D. Nicola, T. Akhter, Eur. Phys. J. D 72, 95 (2018)

    ADS  Google Scholar 

  30. S.K. El-Labany, H.O. Nafie, A. El-Sheikh, J. Plasma Phys. 56, 13 (1996)

    ADS  Google Scholar 

  31. G. Lehmann, K.H. Spatschek, Phys. Rev. E 83, 036401 (2011)

    ADS  Google Scholar 

  32. D. Lu, Z. Liang Li, B.-S. Xie, Phys. Rev. E 88, 033109 (2013)

    ADS  Google Scholar 

  33. C.M. Surko, T. Murphy, Phys. Fluids B 2, 1372 (1990)

    ADS  Google Scholar 

  34. F.B. Rizzato, J. Plasma Phys. 40, 289 (1988)

    ADS  Google Scholar 

  35. Y.N. Nejoh, Aust. J. Phys. 50, 309 (1997)

    ADS  Google Scholar 

  36. R.S. Tiwari, Phys. Lett. A 372, 3461 (2008)

    ADS  Google Scholar 

  37. S. Mahmood, H. Saleem, Phys. Plasmas 10, 4680 (2003)

    ADS  Google Scholar 

  38. T.S. Gill, A.S. Bains, N.S. Saini, Can. J. Phys. 87, 861 (2009)

    ADS  Google Scholar 

  39. J. Han, S. Du, W. Duan, Phys. Plasmas 15, 112104 (2008)

    ADS  Google Scholar 

  40. R. Sarma, G.C. Das, R. Das, N.C. Adhikary, Phys. Plasmas 25, 073704 (2018)

    ADS  Google Scholar 

  41. G.C. Das, R. Sarma, Phys. Plasmas 25, 043703 (2018)

    ADS  Google Scholar 

  42. M.G. Hafez, M.R. Talukder, Astrophys. Space Sci. 359, 27 (2015)

    ADS  Google Scholar 

  43. A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 2610 (1996)

    ADS  Google Scholar 

  44. A. Mushtaq, J. Phys. A: Math. Theor. 43, 315501 (2010)

    Google Scholar 

  45. H. Alinejad, Phys. Lett. A 375, 1005 (2011)

    ADS  Google Scholar 

  46. H. Schamel, Phys. Plasmas 19, 020501 (2012)

    ADS  Google Scholar 

  47. G.C. Das, J. Sarma, M. Talukdar, Phys. Plasmas 5, 63 (1998)

    ADS  MathSciNet  Google Scholar 

  48. G.C. Das, J. Sarma, Phys. Plasmas 5, 3918 (1998)

    ADS  MathSciNet  Google Scholar 

  49. G.C. Das, S.N. Paul, Phys. Fluids 28, 823 (1985)

    ADS  Google Scholar 

  50. Y. Nejoh, Phys. Fluids B 4, 2830 (1992)

    ADS  Google Scholar 

  51. A. Esfandyari, S. Khorram, A. Rostami, Phys. Plasmas 8, 4753 (2001)

    ADS  Google Scholar 

  52. K. Singh, V. Kumar, Phys. Plasmas 12, 052103 (2005)

    ADS  Google Scholar 

  53. R. Roychoudhury, S. Bhattacharyya, Phys. Fluids 30, 2582 (1987)

    ADS  Google Scholar 

  54. K. Ghosh, D. Ray, Phys. Fluids B 3, 303 (1991)

    ADS  Google Scholar 

  55. H. Kuehl, C. Zhang, Phys. Fluids B 3, 555 (1991)

    ADS  Google Scholar 

  56. Y. Nejoh, H. Sanuki, Phys. Plasmas 1, 2154 (1994)

    ADS  Google Scholar 

  57. N.C. Lee, C.R. Choi, Phys. Plasmas 14, 022307 (2007)

    ADS  Google Scholar 

  58. E. Benkhelifa, M. Djebli, Laser Part. Beams 33, 273 (2015)

    ADS  Google Scholar 

  59. T. Katsouleas, W.B. Mori, Phys. Rev. Lett. 61, 90 (1988)

    ADS  Google Scholar 

  60. R. Svensson, Astrophys. J. 258, 335 (1982)

    ADS  Google Scholar 

  61. A.P. Misra, Appl. Math. Comput. 256, 368 (2015)

    MathSciNet  Google Scholar 

  62. N.C. Adhikary, A.P. Misra, H. Bailung, J. Chutia, Phys. Plasmas 17, 044502 (2010)

    ADS  Google Scholar 

  63. A. Esfandyari-Kalejahi, M. Mehdipoor, M. Akbari Moghanjoughi, Phys. Plasmas 16, 052309 (2009)

    ADS  Google Scholar 

  64. J.P. Sullivan, S.J. Gilbert, J.P. Marler, R.G. Greaves, S.J. Buckman, C.M. Surko, Phys. Rev. A 66, 042708 (2002)

    ADS  Google Scholar 

  65. D.N. Langenberg, B.N. Taylor, Nat. Bur. Stand. (U.S.), Spec. Publ. 343, 543 (1971)

    Google Scholar 

  66. J. Bickford, Extraction of antiparticles concentrated in Planetary magnetic fields, Draper Laboratory, 555 Technology square, Cambridge, MA, 2006

  67. T.S. Gill, A. Singh, H. Kaur, N.S. Saini, P. Bala, Phys. Lett. A 361, 364 (2007)

    ADS  Google Scholar 

  68. R. Sarma, A.P. Misra, N.C. Adhikary, Chin. Phys. B 27, 105207 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridip Sarma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, R., Dev, A.N., Boro, B. et al. Three-dimensional modified Korteweg-de Vries equation in a magnetised relativistic plasma with positron beam and vortex-like electron distribution. Eur. Phys. J. D 74, 23 (2020). https://doi.org/10.1140/epjd/e2019-100422-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100422-y

Keywords

Navigation