Skip to main content
Log in

Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here we present a combined theoretical and experimental study on dissociative ionization of (η3-allyl)Ru(CO)3Br, a potential precursor for focused electron beam induced deposition. Experimental appearance energies are determined by electron impact ionization and relative cross sections for selected fragmentation channels are presented from their respective thresholds to about 70 eV incident electron energy. Threshold energies for individual fragmentation channels are computed at the hybrid density functional and coupled cluster level of theory and compared to the respective experimental appearance energies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).

    Google Scholar 

  2. W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008).

    ADS  Google Scholar 

  3. M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012).

    Google Scholar 

  4. J. Schaefer, J. Hoelzl, Thin Solid Films 13, 81 (1972).

    ADS  Google Scholar 

  5. A.P. Knights, P.G. Coleman, Appl. Surf. Sci. 85, 43 (1995).

    ADS  Google Scholar 

  6. N. Silvis-Cividjian, C.W. Hagen, H.A. Leunissen, P. Kruit, Microelectron. Eng. 61–62, 693 (2002).

    Google Scholar 

  7. S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012).

    Google Scholar 

  8. S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013).

    ADS  Google Scholar 

  9. O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012).

    Google Scholar 

  10. K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012).

    ADS  Google Scholar 

  11. R.M. Thorman, T.P. R.K., D.H. Fairbrother, O. Ingólfsson, Beilstein J. Nanotechnol. 6, 1904 (2015).

    Google Scholar 

  12. P.C. Hoyle, J.R.A. Cleaver, H. Ahmed, Appl. Phys. Lett. 64, 1448 (1994).

    ADS  Google Scholar 

  13. T.P. R.K., S. Barth, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D 70, 163 (2016).

    ADS  Google Scholar 

  14. R.M. Thorman, I. Unlu, K.R. Johnson, R. Bjornsson, L. McElwee-White, D.H. Fairbrother, O. Ingólfsson, Phys. Chem. Chem. Phys. 20, 8 (2018).

    Google Scholar 

  15. J. Kopyra, P. Maciejewska, J. Maljković, Beilstein J. Nanotechnol. 8, 2257 (2017).

    Google Scholar 

  16. M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018).

    Google Scholar 

  17. J.A. Spencer, Y.C. Wu, L. McElwee-White, D.H. Fairbrother, J. Am. Chem. Soc. 138, 9172 (2016).

    Google Scholar 

  18. T.P. R.K., I. Unlu, S. Barth, O. Ingólfsson, D.H. Fairbrother, J. Phys. Chem. C 122 (2017).

  19. W.G. Garden, H. Lu, J.A. Spencer, D.H. Fairbrother, L. McElwee-White, MRS Commun. 8, 343 (2018).

    Google Scholar 

  20. I. Unlu, J.A. Spencer, K.R. Johnson, R.M. Thorman, O. Ingólfsson, L. McElwee-White, D.H. Fairbrother, Phys. Chem. Chem. Phys. 20, 7862 (2018).

    Google Scholar 

  21. T.P. R.K., P. Weorich, L. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018).

    Google Scholar 

  22. R.M. Thorman, J.A. Brannaka, L. McElwee-White, O. Ingólfsson, Phys. Chem. Chem. Phys. 19, 13264 (2017).

    Google Scholar 

  23. R.M. Thorman, R. Bjornsson, O. Ingólfsson, Eur. Phys. J. D. 70, 164 (2016).

    ADS  Google Scholar 

  24. J.A. Spencer, J. Brannaka, M. Barclay, L. McElwee-White, D.H. Fairbrother, J. Phys. Chem. C 119, 15349 (2015).

    Google Scholar 

  25. J. Jurczyk, C.R. Brewer, O.M. Hawkins, M.N. Polyakov, C. Kapusta, L. McElwee-White, I. Utke, ACS Appl. Mater. Interfaces 11, 28164 (2019).

    Google Scholar 

  26. J.H. Noh, M.G. Stanford, B.B. Lewis, J.D. Fowlkes, H. Plank, P.D. Rack, Appl. Phys. A 117, 1705 (2014).

    ADS  Google Scholar 

  27. V. Scheuer, H. Koops, T. Tschudi, Microelectron. Eng. 5, 423 (1986).

    Google Scholar 

  28. C.M. Gonzalez, W. Slingenbergh, R. Timilsina, J.-H. Noh, M.G. Stanford, B.B. Lewis, K.L. Klein, T. Liang, J.D. Fowlkes, P.D. Rack, Proc. SPIE 9048, 90480M (2014).

    Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  30. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999).

    ADS  Google Scholar 

  31. C. Riplinger, F. Neese, J. Chem. Phys. 138, 034106 (2013).

    ADS  Google Scholar 

  32. C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 139, 134101 (2013).

    ADS  Google Scholar 

  33. C. Riplinger, P. Pinski, U. Becker, E. Valeev, F. Neese, J Chem Phys. 144, 024109 (2016).

    ADS  Google Scholar 

  34. F. Neese, WIREs Comput. Mol. Sci. 2, 73 (2012).

    Google Scholar 

  35. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

    Google Scholar 

  36. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010).

    ADS  Google Scholar 

  37. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011).

    Google Scholar 

  38. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    ADS  Google Scholar 

  39. J.P. Perdew, Phys. Rev. B 33, 8822 (1986).

    ADS  Google Scholar 

  40. M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2, 1282 (2006).

    Google Scholar 

  41. M.P. Waller, H. Braun, N. Hojdis, M. Bühl, J. Chem. Theory Comput. 3, 2234 (2007).

    Google Scholar 

  42. M. Buhl, C. Reimann, D.A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 4, 1449 (2008).

    Google Scholar 

  43. M.M. Quintal, A. Karton, M.A. Iron, A.D. Boese, J.M. Martin, J. Phys. Chem. A 110, 709 (2006).

    Google Scholar 

  44. C.A. Jiménez-Hoyos, B.G. Janesko, G.E. Scuseria, J. Phys. Chem. A 113, 11742 (2009).

    Google Scholar 

  45. T. Weymuth, E.P.A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10, 3092 (2014).

    Google Scholar 

  46. A. Hellweg, C. Hattig, S. Hofener, W. Klopper, Theor. Chem. Acc. 117, 587 (2007).

    Google Scholar 

  47. F. Neese, J. Am. Chem. Soc. 128, 10213 (2006).

    Google Scholar 

  48. E.H. Bjarnason, B. Ómarsson, S. Engmann, F.H. Ómarsson, O. Ingólfsson, Eur. Phys. J. D. 68, 121 (2014).

    ADS  Google Scholar 

  49. R.C. Wetzel, F.A. Baiocchi, T.R. Hayes, R.S. Freund, Phys. Rev. A 35, 559 (1987).

    ADS  Google Scholar 

  50. G.H. Wannier, Phys. Rev. 90, 817 (1953).

    ADS  Google Scholar 

  51. K.R. Johnson, A.P. Rodriguez, C.R. Brewer, J.A. Brannaka, Z. Shi, J. Yang, B. Salazar, L. McElwee-White, A.V. Walker, J. Chem. Phys. 146, 052816 (2017).

    ADS  Google Scholar 

  52. G. Sbrana, G. Braca, F. Piacenti, P. Pino, J. Organomet. Chem. 13, 240 (1968).

    Google Scholar 

  53. G.A. Junk, H.J. Svec, Z. Naturforsch, B 23, 1 (1968).

    Google Scholar 

  54. M.I. Bruce, Adv. Organomet. Chem. 6, 273 (1968).

    Google Scholar 

  55. R.B. King, J. Am. Chem. Soc. 90, 1417 (1968).

    Google Scholar 

  56. O. Ingólfsson, F. Weik, E. Illenberger, Int. J. Mass Spectrom. Ion Processes 155, 1 (1996).

    ADS  Google Scholar 

  57. J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016).

    Google Scholar 

  58. M. Zlatar, M. Allan, J. Fedor, J. Phys. Chem. C 120, 10667 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oddur Ingólfsson.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale (2018)”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2019-100151-9.

Electronic supplementary material

Supplementary Material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cipriani, M., Thorman, R.M., Brewer, C.R. et al. Dissociative ionization of the potential focused electron beam induced deposition precursor π-allyl ruthenium(II) tricarbonyl bromide, a combined theoretical and experimental study. Eur. Phys. J. D 73, 227 (2019). https://doi.org/10.1140/epjd/e2019-100151-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100151-9

Keywords

Navigation