Skip to main content

Advertisement

Log in

Simulation of the energy spectra of swift light ion beams after traversing cylindrical targets: a consistent interpretation of experimental data relevant for hadron therapy

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have performed detailed simulations of the energy spectra, recorded at several angles, of proton and helium ion beams after traversing thin cylindrical targets of different nature (liquid water and ethanol jets, as well as a solid aluminium wire), in order to reproduce a series of measurements intended to assess the stopping power of 0.3–2 MeV ions. The authors of these experiments derived values of the stopping power of liquid water (a quantity essential for the evaluation of radiation effects in materials, particularly for radiotherapy purposes) that are ~10% lower than what is expected from other measurements and theories. In our simulations, instead of treating the stopping power as an unknown free parameter to be determined, we use as input the electronic stopping power accurately calculated within the dielectric formalism. We take into account in the simulations the different interactions that each projectile can experience when moving through the target, such as electronic stopping, nuclear scattering or electron charge-exchange processes. The detailed geometry of the target is also accounted for. We find that our simulated energy distributions are in excellent agreement with the published measurements when the diameter of the cylindrical targets is slightly reduced, what is compatible with the potential evaporation of the liquid jets. On the basis of such an excellent agreement, we validate the accuracy of the model we use to calculate electronic excitation cross sections for ions in condensed matter in its range of applicability (particularly the electronic stopping power) needed for charged particle transport models, and we offer a consistent, but alternative, interpretation for these experiments on ion irradiation of cylindrical targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016)

    ADS  Google Scholar 

  2. A.V. Solov’yov, Nanoscale Insights into Ion-beam Cancer Therapy (Springer International Publishing, Switzerland, 2017)

  3. J.C. Chancellor, R.S. Blue, K.A. Cengel, S.M. Auñón-Chancellor, K.H. Rubins, H.G. Katzgraber, A.R. Kennedy, Microgravity 4, 1 (2018)

    Google Scholar 

  4. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014)

    ADS  Google Scholar 

  5. A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2016)

    ADS  Google Scholar 

  6. H. Nikjoo, S. Uehara, D. Emfietzoglou, Interaction of Radiation with Matter (CRC Press, Boca Raton, 2012)

  7. D. Emfietzoglou, H. Nikjoo, Radiat. Res. 163, 98 (2005)

    ADS  Google Scholar 

  8. R. Garcia-Molina, I. Abril, S. Heredia-Avalos, I. Kyriakou, D. Emfietzoglou, Phys. Med. Biol. 56, 6475 (2011)

    Google Scholar 

  9. P. de Vera, R. Garcia-Molina, I. Abril, A.V. Solov’yov, Phys. Rev. Lett. 110, 148104 (2013)

    ADS  Google Scholar 

  10. M. Dingfelder, Appl. Radiat. Isot. 83, 142 (2014)

    Google Scholar 

  11. P. de Vera, R. Garcia-Molina, I. Abril, Phys. Rev. Lett. 114, 018101 (2015)

    ADS  Google Scholar 

  12. D. Emfietzoglou, G. Papamichael, H. Nikjoo, Radiat. Res. 188, 355 (2017)

    ADS  Google Scholar 

  13. P. de Vera, R. Garcia-Molina, J. Phys. Chem. C 123, 2075 (2019)

    Google Scholar 

  14. A. Itoh, M. Kaneda, S. Satoh, K. Ishii, H. Tsuchida, Nucl. Instrum. Methods Phys. Res. B 245, 76 (2006)

    ADS  Google Scholar 

  15. M. Shimizu, M. Kaneda, T. Hayakawa, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 267, 2667 (2009)

    ADS  Google Scholar 

  16. A. Itoh, M. Kaneda, M. Shimizu, T. Hayakawa, T. Iriki, H. Tsuchida, Vacuum 84, 999 (2010)

    ADS  Google Scholar 

  17. M. Shimizu, T. Hayakawa, M. Kaneda, H. Tsuchida, A. Itoh, Vacuum 84, 1002 (2010)

    ADS  Google Scholar 

  18. T. Siiskonen, H. Kettunen, K. Peräjärvi, A. Javanainen, M. Rossi, W.H. Trzaska, J. Turunen, A. Virtanen, Phys. Med. Biol. 56, 2367 (2011)

    Google Scholar 

  19. J. Lindhard, K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954)

    Google Scholar 

  20. M. Dingfelder, M. Inokuti, H.G. Paretzke, Radiat. Phys. Chem. 59, 255 (2000)

    ADS  Google Scholar 

  21. M. Dingfelder, Radiat. Protect. Dosim. 99, 23 (2002)

    Google Scholar 

  22. D. Emfietzoglou, M. Moscovitch, Nucl. Instrum. Methods Phys. Res. B 209, 239 (2003)

    ADS  Google Scholar 

  23. D. Emfietzoglou, Radiat. Phys. Chem. 66, 373 (2003)

    ADS  Google Scholar 

  24. A. Besemer, H. Paganetti, B. Bednarz, Phys. Med. Biol. 58, 887 (2013)

    Google Scholar 

  25. H. Paul, Adv. Quantum Chem. 65, 39 (2013)

    Google Scholar 

  26. R. Garcia-Molina, I. Abril, P. de Vera, H. Paul, Nucl. Instrum. Methods Phys. Res. B 299, 51 (2013)

    ADS  Google Scholar 

  27. Geant4, 2008, http://geant4.web.cern.ch/geant4/

  28. M. Kaneda, S. Sato, M. Shimizu, Z. He, K. Ishii, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 256, 97 (2007)

    ADS  Google Scholar 

  29. M. Shimizu, T. Hayakawa, K. Hisano, M. Kaneda, H. Tsuchida, A. Itoh, Nucl. Instrum. Methods Phys. Res. B 269, 810 (2011)

    ADS  Google Scholar 

  30. R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, D. Emfietzoglou, in Fast ion-atom and ion-molecule collisions, edited by D. Belkic (World Scientific Publishing Company, Singapore, 2012), Chap. 8

  31. P. Bauer, W. Käferböck, V. Nečas, Nucl. Instrum. Methods Phys. Res. B 93, 132 (1994)

    ADS  Google Scholar 

  32. W.A. Wenzel, W. Whaling, Phys. Rev. 87, 499 (1952)

    ADS  Google Scholar 

  33. D.A. Andrews, G. Newton, J. Phys. D 10, 845 (1977)

    ADS  Google Scholar 

  34. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM - The Stopping and Range of Ions in Matter (SRIM Co., Chester, Maryland, 2008)

  35. ICRU, Stopping Powers and Ranges for Protons and Alpha Particles, International Commission on Radiation Units and Measurements, Report 49, Bethesda, Maryland, 1993

  36. I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou, D. Emfietzoglou, Adv. Quantum Chem. 65, 129 (2013)

    Google Scholar 

  37. S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)

    ADS  Google Scholar 

  38. S. Heredia-Avalos, I. Abril, C.D. Denton, J.C. Moreno-Marn, R. Garcia-Molina, J. Phys.: Condens. Matter 19, 466205 (2007)

    ADS  Google Scholar 

  39. P.L. Grande, G. Schiwietz, CasP - Convolution approximation for swift particles, version 3.1 (2005), code available at https://www.helmholtz-berlin.de/people/gregor-schiwietz/casp_en.html

  40. N.D. Mermin, Phys. Rev. B 1, 2362 (1970)

    ADS  Google Scholar 

  41. H. Hayashi, N. Watanabe, Y. Udagawa, C.-C. Kao, Proc. Natl. Acad. Sci. USA 97, 6264 (2000)

    ADS  Google Scholar 

  42. P. de Vera, I. Abril, R. Garcia-Molina, Radiat. Res. 190, 282 (2018)

    ADS  Google Scholar 

  43. I. Abril, P. de Vera, R. Garcia-Molina, I. Kyriakou, D. Emfietzoglou, Nucl. Instrum. Methods Phys. Res. B 352, 176 (2015)

    ADS  Google Scholar 

  44. T. Kondow, F. Mafuné, Annu. Rev. Phys. Chem. 51, 731 (2000)

    ADS  Google Scholar 

  45. M. Faubel, S. Schlemmer, J.P. Toennies, Z. Phys, D 10, 269 (1988)

    Google Scholar 

  46. C.D. Denton, I. Abril, J.C. Moreno-Marn, S. Heredia-Avalos, R. Garcia-Molina, Phys. Status Solidi B 245, 1498 (2008)

    ADS  Google Scholar 

  47. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, B. Huang, Y. Ji, Nucl. Instrum. Methods Phys. Res. B 222, 27 (2004)

    ADS  Google Scholar 

  48. S. Limandri, P. de Vera, R.C. Fadanelli, L.C.C.M. Nagamine, A. Mello, R. Garcia-Molina, M. Behar, I. Abril, Phys. Rev. E 89, 022703 (2014)

    ADS  Google Scholar 

  49. H. Paul, Stopping Power of Matter for Ions, Graphs, Data, Comments and Programs, https://www-nds.iaea.org/stopping/

  50. A. Akhavan-Rezayat, R.B.J. Palmer, J. Phys. E 13, 877 (1980)

    ADS  Google Scholar 

  51. A.K.M.M. Haque, A. Mohammadi, H. Nikjoo, Radiat. Protect. Dosim. 13, 71 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo de Vera.

Additional information

Contribution to the Topical Issue “Dynamics of Systems on the Nanoscale”, edited by Ilko Bald, Ilia A. Solov’yov, Nigel J. Mason and Andrey V. Solov’yov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vera, P., Garcia-Molina, R. & Abril, I. Simulation of the energy spectra of swift light ion beams after traversing cylindrical targets: a consistent interpretation of experimental data relevant for hadron therapy. Eur. Phys. J. D 73, 209 (2019). https://doi.org/10.1140/epjd/e2019-100083-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100083-4

Keywords

Navigation