Skip to main content

Advertisement

Log in

Dependence of inertial confinement fusion ignition energy threshold on electron thermal conduction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In inertial confinement fusion, ignition conditions of the thermonuclear deuterium–tritium fusion reactions depend on the electron thermal heat conduction that affects the hot-spot mass accretion and energy balance. One-dimensional hydrodynamic calculations have been performed to simulate the implosion of a capsule directly irradiated by laser beams. For these calculations, the laser-capsule configuration has been scaled using homothetic transformations to scan the transition to ignition while keeping the implosion velocity constant. The electronic heat conduction has been modified by two alternative ways: (i) the classical Spitzer heat flux has been harmonically limited to the free streaming limit using a flux limit factor φ, and (ii) the classical Spitzer coefficient is reduced by a multiplicative factor α < 1. A change of the thermal conductivity affects the performances of the implosion and it can be beneficial or harmful. Parametric studies have been performed for both alternatives, looking for the kinetic energy threshold that generates a unitary energy gain as a function of parameters φ or α, respectively. These studies show how the energy threshold is modified by acting on the heat flux and that there is a minimum ignition energy that can be tuned by appropriately reducing the heat conduction. A simple qualitative model is developed to understand the relation between energy threshold and heat conduction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Lindl, Inertial  Confinement  Fusion: The Quest  for Ignition  and  High Gain  Using  Indirect  Drive (Springer, New York, 1998)

  2. S. Atzeni, J. Meyer-ter-Vehn, The   Physics   of   Inertial Fusion (Oxford Science Press, Oxford, 2004)

  3. J. Meyer-ter-Vehn, Nucl. Fusion 22, 561 (1982)

    Article  Google Scholar 

  4. R. Betti, K. Anderson, V.N. Goncharov, R.L. McCrory, D.D. Meyerhofer, S. Skupsky, R.P.J. Town, Phys. Plasmas 9, 2277 (2002)

    Article  ADS  Google Scholar 

  5. R. Ramis, J. Meyer-ter-Vehn, Comput. Phys. Commun. 203, 226 (2016)

    Article  ADS  Google Scholar 

  6. B. Canaud, F. Garaude, Nucl. Fusion 45, L43 (2005)

    Article  ADS  Google Scholar 

  7. G.B. Zimmermann, Lawrence Livermore National Lab. UCRL-74811 (1973)

  8. G.B. Zimmermann, W.L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)

    Google Scholar 

  9. S. Atzeni, A. Caruso, Il Nuovo Cimento 64, 383 (1981)

    Article  Google Scholar 

  10. S. Atzeni, Plasma Phys. Control. Fusion 29, 1535 (1987)

    Article  ADS  Google Scholar 

  11. V. Brandon, B. Canaud, M. Temporal, R. Ramis, Nucl. Fusion 54, 083016 (2014)

    Article  ADS  Google Scholar 

  12. M. Temporal, V. Brandon, B. Canaud, J.P. Didelez, R. Fedosejevs, R. Ramis, Nucl. Fusion 52, 103011 (2012)

    Article  ADS  Google Scholar 

  13. L.J. Spitzer, Jr., Physics of Fully Ionized Plasmas (Wiley Interscience, New York, 1962)

  14. D. Shvarts, J. Delettrez, R.L. McCrory, C.P. Verdon, Phys. Rev. Lett. 47, 247 (1981)

    Article  ADS  Google Scholar 

  15. A.R. Bell, Phys. Fluids 28, 2007 (1985)

    Article  ADS  Google Scholar 

  16. M.C. Herrmann, M. Tabak, J.D. Lindl, Nucl. Fusion 41, 99 (2001)

    Article  ADS  Google Scholar 

  17. G.S. Fraley, E.J. Linnebur, R.J. Mason, R.L. Morse, Phys. Fluids 17, 474 (1974)

    Article  ADS  Google Scholar 

  18. S. Atzeni, A. Caruso, Nuovo Cimento 80B, 71 (1984)

    Article  ADS  Google Scholar 

  19. M.M. Basko, Nucl. Fusion 30, 2443 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Temporal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temporal, M., Canaud, B., Brandon, V. et al. Dependence of inertial confinement fusion ignition energy threshold on electron thermal conduction. Eur. Phys. J. D 73, 5 (2019). https://doi.org/10.1140/epjd/e2018-90475-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90475-1

Keywords

Navigation