Skip to main content
Log in

Surrealistic Bohmian trajectories do not occur with macroscopic pointers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We discuss whether position measurements in quantum mechanics can be contradictory with Bohmian trajectories, leading to what has been called “surrealistic trajectories” in the literature. Previous work has considered that a single Bohmian position can be ascribed to the pointer. Nevertheless, a correct treatment of a macroscopic pointer requires that many particle positions should be included in the dynamics of the system, and that statistical averages should be made over their random initial values. Using numerical as well as analytical calculations, we show that these surrealistic trajectories exist only if the pointer contains a small number of particles; they completely disappear with macroscopic pointers. With microscopic pointers, non-local effects of quantum entanglement can indeed take place and introduce unexpected trajectories, as in Bell experiments; moreover, the initial values of the Bohmian positions associated with the measurement apparatus may influence the trajectory of the test particle, and determine the result of measurement. Nevertheless, a detailed observation of the trajectories of the particles of the pointer reveals the nature of the trajectory of the test particle; nothing looks surrealistic if all trajectories are properly interpreted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium 8, 225 (1927)

    Article  Google Scholar 

  2. L. de Broglie, Interpretation of quantum mechanics by the double solution theory, Ann. Fond. Louis Broglie 12, 1 (1987)

    MathSciNet  Google Scholar 

  3. L. de Broglie,Tentative d’Interprétation causale et non-linéaire de la Mécanique Ondulatoire (Gauthier-Villars, Paris, 1956)

  4. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  6. P.R. Holland,The Quantum Theory of Motion, (Cambridge University Press, Cambridge, 1993)

  7. X. Oriols, J. Mompart, Overview of Bohmian mechanics, inApplied Bohmian mechanics: from nanoscale systems to cosmology, (Editorial Pan Stanford Publishing Pte. Ltd., 2012), Chap. 1, pp. 15–147; https://doi.org/arXiv:1206.1084v2[quant-ph]

  8. J. Bricmont,Making Sense of Quantum Mechanics, (Springer, Berlin, 2016)

  9. R.B. Griffiths, Bohmian mechanics and consistent histories, Phys. Lett. A 261, 227 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. B.G. Englert, M.O. Scully, G. Süssmann, H. Walther, Surrealistic Bohm trajectories, Z. Naturforschung, 47a, 1175 (1992)

    ADS  Google Scholar 

  11. D. Dürr, W. Fusseder, S. Goldstein, N. Zanghi, Comments on surrealistic Bohm trajectories, Z. Naturforschung, 48a, 1261 (1993)

    ADS  Google Scholar 

  12. C. Dewdney, L. Hardy, E.J. Squires, How late measurements of quantum trajectories can fool a detector, Phys. Lett. A 184, 61 (1993)

    Article  Google Scholar 

  13. Y. Aharonov, L. Vaidman, About position measurements which do not show the Bohmian particle position, inBohmian Mechanics and Quantum Theory: An Appraisal, edited by J.T. Cushing et al. (Kluwer, 1996), p. 141

  14. M.O. Scully, Do Bohm trajectories always provide a trustworthy physical picture of particle motion? Phys. Scripta T 76, 41 (1998)

    Article  ADS  Google Scholar 

  15. Y. Aharonov, B.-G. Englert, M.O. Scully, Protective measurements and Bohm trajectories, Phys. Lett. A 263, 137 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. B.J. Hiley, Welcher Weg experiments from the Bohm perspective, Quantum theory: reconsiderations of foundations; Växjö conbference, AIP Conf. Proc. 810, 154 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. H.M. Wiseman, Grounding Bohmian mechanics in weak values and bayesianism, New J. Phys. 9, 165 (2007)

    Article  ADS  Google Scholar 

  18. D. Dürr, S. Goldstein, N. Zanghi, Comments on surrealistic Bohm trajectories, J. Stat. Phys. 134, 1023 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. W.P. Schleich, M. Freyberger, M.S. Zubairy, Reconstruction of Bohm trajectories and wave functions from interferometric measurements, Phys. Rev. A 87, 014102 (2013)

    Article  ADS  Google Scholar 

  20. N. Gisin, Why Bohmian mechanics? https://doi.org/arXiv:1509.00767[quant-ph] (2015)

  21. S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, A.M. Steinberg, Observing the average trajectories of single photons in a two slit interferometer, Science 332, 1170 (2011)

    Article  ADS  Google Scholar 

  22. B. Braveman, C. Simon, Proposal to observe the nonlocality of Bohmian trajectories with entangled photons, Phys. Rev. Lett. 110, 060406 (2013)

    Article  ADS  Google Scholar 

  23. D.H. Mahler, L. Rozema, K. Fisher, L. Vermeyden, K.J. Resch, H.W. Wiseman, A. Steinberg, Experimental nonlocal and surreal Bohmian trajectories, Sci. Adv. 2, e1501466 (2016)

    Article  ADS  Google Scholar 

  24. F. Laloë,Comprenons-nous Vraiment la Mécanique Quantique? 2nd edn. (EDP Sciences, 2018); see in particular Appendix I

  25. G. Naaman-Marom, N. Erez, L. Vaidman, Position measurements in the de Broglie–Bohm interpretation of quantum mechanics, Ann. Phys. 327, 2522 (2012)

    Article  ADS  Google Scholar 

  26. Wolfram Research Inc., Mathematica, Version 11.1 (Champaign, IL, 2017)

  27. Y. Xiao, Y. Kedem, J.-S. Xu, C.-F. Li, G.-C. Guo, Experimental nonlocal steering of Bohmian trajectories, Opt. Express 25, 14643 (2017)

    Google Scholar 

  28. J.S. Bell, de Broglie-Bohm, delayed-choice double-slit experiment, and density matrix, Int. J. Quantum Chem. 14, 155 (1980)

    Google Scholar 

  29. M. Toroš, S. Donaldi, A. Bassi, Bohmian mechanics, collapse models and the emergence of classicality, J. Phys. A 49, 355302 (2016)

    Article  MathSciNet  Google Scholar 

  30. M. Correggi, G. Morchio, Quantum mechanics and stochastic mechanics for compatible observables at different times, Ann. Phys. 296, 371 (2002)

    Article  ADS  Google Scholar 

  31. A. Neumaier, Bohmian mechanics contradicts quantum mechanics, https://doi.org/arXiv:quant-ph/0001011 (2000)

  32. X. Oriols, A. Benseny, Conditions for the classicality of the center of mass of manyparticle quantum states, New J. Phys. 19, 063031 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Laloë.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tastevin, G., Laloë, F. Surrealistic Bohmian trajectories do not occur with macroscopic pointers. Eur. Phys. J. D 72, 183 (2018). https://doi.org/10.1140/epjd/e2018-90129-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90129-4

Keywords

Navigation