Skip to main content
Log in

Practical decoy state quantum key distribution with detector efficiency mismatch

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Decoy state method is widely used in practical quantum key distribution (QKD) systems to substantially extend the secure communication distance. Detector efficiency mismatch (DEM), which exists between practical detectors, effects the security of practical QKD systems seriously. Security of single photon QKD with DEM has been analyzed. However, estimate of the phase error rate still remains difficult in practice. Here, using a simple equivalent detection model, the mutual information between legitimate users and the eavesdropper for single photon state in QKD with DEM is analyzed. Then we improve the security analysis to cover the situation of weak coherent QKD with DEM. A general theory of the decoy state QKD with DEM is proposed to calculate the lower bound of count rate and the upper bound of error rate of single photon state signals. The numerical simulations show that secure key can also be generated, but the existing of DEM will reduce the secure key of practical decoy state QKD systems. The experiment parameter related security bound of DEM is also given out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York (1984), Vol. 175

  2. B. Huttner, N. Imoto, N. Gisin, T. Mor, Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  3. V. Makarov, D.R. Hjelme, J. Mod. Opt. 52, 691 (2005)

    Article  ADS  Google Scholar 

  4. V. Makarov, A. Anisimov, J. Skaar, Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  5. V. Makarov, J. Skaar, Quantum Inf. Comput. 8, 622 (2008)

    MathSciNet  Google Scholar 

  6. B. Qi, C.-H.F. Fung, H.-K. Lo, X.F. Ma, Quantum. Inf. Comput. 7, 73 (2007)

    MathSciNet  Google Scholar 

  7. Y. Zhao, C.-H.F. Fung, B. Qi, C. Chen, H.-K. Lo, Phys. Rev. A 78, 042333 (2008)

    Article  ADS  Google Scholar 

  8. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, G. Ribordy, Phys. Rev A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  9. N. Jain et al., New J. Phys. 16, 123030 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Weier et al., New J. Phys. 13, 073024 (2011)

    Article  ADS  Google Scholar 

  11. C. Wiechers et al., New J. Phys. 13, 013043 (2011)

    Article  ADS  Google Scholar 

  12. C.-H.F. Fung, B. Qi, K. Tamaki, H.-K. Lo, Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  13. F. Xu, B. Qi, H.-K. Lo, New J. Phys. 12, 113026 (2010)

    Article  ADS  Google Scholar 

  14. A. Lamas-Linares, C. Kurtsiefer, J. Opt. Express 15, 9388 (2007)

    Article  ADS  Google Scholar 

  15. W.-L. Wang, M. Gao, Z. Ma, J. Phys. A: Math. Theor. 46, 455301 (2013)

    Article  Google Scholar 

  16. L. Lydersen et al., Nat. Photonics 4, 686 (2010a)

    Article  ADS  Google Scholar 

  17. L. Lydersen et al., Opt. Express 18, 27938 (2010b)

    Article  ADS  Google Scholar 

  18. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, V. Makarov, Opt. Express 19, 23590 (2011)

    Article  ADS  Google Scholar 

  19. V. Makarov, New J. Phys. 11, 065003 (2009)

    Article  ADS  Google Scholar 

  20. L. Lydersen, M.K. Akhlaghi, A.H. Majedi, J. Skaar, V. Makarov, New J. Phys. 13, 113042 (2011)

    Article  ADS  Google Scholar 

  21. H.-W. Li et al., Phys. Rev. A 84, 062308 (2011)

    Article  ADS  Google Scholar 

  22. S.-H. Sun, M.-S. Jiang, L.-M. Liang, Phys. Rev. A 83, 062331 (2011)

    Article  ADS  Google Scholar 

  23. S.-H. Sun, M. Gao, M.-S. Jiang, C.-Y. Li, L.-M. Liang, Phys. Rev. A 85, 032304 (2012)

    Article  ADS  Google Scholar 

  24. W.-T. Liu, S.-H. Sun, L.-M. Liang, J.-M. Yuan, Phys. Rev. A 83, 042326 (2011)

    Article  ADS  Google Scholar 

  25. Y.-L. Tang et al., Phys. Rev. A 88, 22308 (2013)

    Article  ADS  Google Scholar 

  26. S.-H. Sun, M.-S. Jiang, X.-C. Ma, C.-Y. Li, L.-M. Liang, Sci. Rep. 4 (2014)

  27. W.Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  28. H.-K. Lo, X.-F. Ma, K. Chen, Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  29. X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  30. B. Qi, C.H. Fung, H.-K. Lo, X.-F. Ma, Quantum Inf. Comput. 7, 73 (2007)

  31. N. Jain et al., Phys. Rev. Lett. 107, 110501 (2011)

    Article  ADS  Google Scholar 

  32. Y.Y. Fei, X.-D. Meng, M. Gao, H. Wang, Z. Ma, Sci. Rep. 8 (2018)

  33. C.-H.F. Fung, K. Tamaki, B. Qi, H.-K. Lo, X.F. Ma, Quantum Inf. Comput. 9, 131 (2009)

    MathSciNet  Google Scholar 

  34. L. Lydersen, J. Skaar, Quantum Inf. Comput. 10, 60 (2010)

    MathSciNet  Google Scholar 

  35. O. Marøy, L. Lydersen, J. Skaar, Phys. Rev. A 82, 032337 (2010)

    Article  ADS  Google Scholar 

  36. P.M. Nielsen et al., J. Mod. Optics 48, 1921 2001

    Google Scholar 

  37. H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  38. T.F.D. Silva, G.C.D. Amaral, G.B. Xavier, G.P. Temporó, J.P.V.D. Weid, IEEE J. Sel. Top. Quantum Electron. 21, 167 (2014)

    Google Scholar 

  39. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, J. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  40. N. Lütkenhaus, A. Shields, New J. Phys. 11, 045005 (2009)

    Article  Google Scholar 

  41. V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  42. D. Gottesman, H.-K. Lo, N. Lutkenhaus, J. Preskill, Security of quantum key distribution with imperfect devices, in Proceedings International Symposium on IEEE on Information Theory 2004. ISIT 2004 (2004), p. 136

  43. I. Csiszàr, J. Korner, IEEE Trans. Inf. Theory 24, 339 (1978)

    Article  Google Scholar 

  44. U.M. Maurer, IEEE Trans. Inf. Theory 39, 733 (1993)

    Article  Google Scholar 

  45. X.-F. Ma, B. Qi, Y. Zhao, H.-K. Lo, Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  46. C. Gobby, Z.-L. Yuan, A.J. Shields, Appl. Phys. Lett. 84, 3762 (2004)

    Article  ADS  Google Scholar 

  47. Y.-Y. Fei, M. Gao, W.-L. Wang, C.-B. Li, Z. Ma, Phys. Rev. A 91, 052305 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-yang Fei or Ming Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Yy., Meng, Xd., Gao, M. et al. Practical decoy state quantum key distribution with detector efficiency mismatch. Eur. Phys. J. D 72, 107 (2018). https://doi.org/10.1140/epjd/e2018-90110-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90110-3

Keywords

Navigation