Skip to main content
Log in

Global minimum structures, stability and electronic properties of small Fe x Cu y (x + y ≤ 5) bimetallic clusters: a DFT study

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report DFT calculations about the global minimum structures, the stability and electronic properties of small free Fe x Cu y nanoalloys (x + y ≤ 5), by using DFT as implemented in SIESTA code. Our results show that the optimized structures of these binary nanoalloys prefer planar geometries in the majority of the cases, these geometries correspond to the same geometry that the corresponding pure Cu clusters. The nanoalloys present magnetic behavior where the ferromagnetic-like order is prefered by the ground state structures, our results show that the total magnetization increases with the number of Fe atoms in the cluster. The electronic behavior is analyzed through the ionization potential, electron affinity, and the hardness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Roduner, Chem. Soc. Rev. 35, 583 (2006)

    Article  Google Scholar 

  2. S. Xiao, W. Hu, W. Luo, Y. Wu, X. Li, H. Deng, Eur. Phys. J. B 54, 479 (2006)

    Article  ADS  Google Scholar 

  3. S. Link, Z.L. Wang, M.A. El-Sayed, J. Phys. Chem. B 103, 3529 (1999)

    Article  Google Scholar 

  4. K.J. Major, C. De, S.O. Obare, Plasmonics 4, 61 (2009)

    Article  Google Scholar 

  5. S.A. Chambers, Y.K. Koo, MRS Bull. 68, 706 (2003)

    Article  Google Scholar 

  6. N.S. Sobal, U. Ebels, H. Mohwald, M. Giersig, J. Phys. Chem. B 107, 7351 (2003)

    Article  Google Scholar 

  7. D. Kodama, K. Shinoda, K. Sato, Y. Konno, R.J. Joseyphus, K. Motomiya, H. Takahashi, T. Matsumoto, Y. Sato, K. Tohji, B. Jeyadevan, Adv. Mater. 18, 3154 (2006)

    Article  Google Scholar 

  8. A. Lyalin, A.V. Solov’yov, W. Greiner, Phys. Rev. A 74, 043201 (2006)

    Article  ADS  Google Scholar 

  9. A.N. Popova, Y.A. Zaharov, V.M. Pugachev, Mater. Lett. 74, 173 (2012)

    Article  Google Scholar 

  10. F. Aguilera-Granja, M.B. Torres, A. Vega, L.C. Balbás, J. Phys. Chem. A 116, 9353 (2012)

    Article  Google Scholar 

  11. E. Hristova, Y. Dong, V.G. Grigoryan, M. Springborg, J. Phys. Chem. A 112, 7905 (2008)

    Article  Google Scholar 

  12. S. Darby, T.V. Mortimer-Jones, R.L. Johnston, C. Roberts, J. Chem. Phys. 116, 1536 (2002)

    Article  ADS  Google Scholar 

  13. N.H. Duc, N.A. Tuan, A. Fnidiki, C. Dorien, J. Teillet, J.B. Youssef, , G.H. Le, J. Phys. Condens. Matter 14, 6657 (2002)

    Article  ADS  Google Scholar 

  14. P. Gorria, D. Martínez-Blanco, J.A. Blanco, M.J. Pérez, A. Hernando, L.F. Barquín, R.I. Smith, Phys. Rev. B 72, 014401 (2005)

    Article  ADS  Google Scholar 

  15. H. Choi, S.-G. Lee, Y.-C. Chung, Comput. Mater. Sci. 49, 5291 (2010)

    Article  Google Scholar 

  16. J. Trujullo-Reyes, V. Sánchez-Mendieta, A. Colín-Cruz, R.A. Morales-Luckie, Water Air Soil Pollut. 207, 307 (2010)

    Article  Google Scholar 

  17. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Solidi (b) 215, 809 (1999)

    Article  ADS  Google Scholar 

  18. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  19. L. Kleinman, D.M. Billander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. M. Pérez, F. Muñoz, J. Mejía-López, G. Martínez, J. Nanopart. Res. 14, 933 (2012)

    Article  Google Scholar 

  22. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  23. V.A. Spasov, T.H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    Article  ADS  Google Scholar 

  24. M.D. Morse, Chem. Rev. (Washington, DC) 86, 1049 (1986)

    Article  Google Scholar 

  25. M. Kabir, A. Mookerjee, A.K. Bhattacharya, Phys. Rev. A 69, 043203 (2004)

    Article  ADS  Google Scholar 

  26. O. Díeguez, M.M.G. Alemany, C. Rey, P. Ordejón, L.J. Gallego, Phys. Rev. B 63, 205407 (2001)

    Article  ADS  Google Scholar 

  27. Q. Ma, Z. Xie, J. Wang, Y. Chi, Solid State Commun. 142, 114 (2007)

    Article  ADS  Google Scholar 

  28. H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B 25, 4412 (1982)

    Article  ADS  Google Scholar 

  29. P.A. Montano, G.K. Shenoy, Solid State Commun. 35, 53 (1980)

    Article  ADS  Google Scholar 

  30. F. Aguilera-Granja, A. Vega, Phys. Rev. B 79, 144423 (2009)

    Article  ADS  Google Scholar 

  31. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  32. M. Finetti, G. Céliz, E.E. Ottavianelli, A.H. Jubert, R. Pis Diez, Comput. Mater. Sci. 65, 494 (2012)

    Article  Google Scholar 

  33. E.M. Sosa-Hernández, J.M. Montejano-Carrizales, P.G. Alvarado-Leyva, Eur. Phys. J. D 70, 208 (2016)

    Article  ADS  Google Scholar 

  34. M.K. Harbola, Proc. Natl. Acad. Sci. U.S.A. 89, 1036 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gilberto Alvarado-Leyva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa-Hernández, E.M., Montejano-Carrizales, J.M. & Alvarado-Leyva, P.G. Global minimum structures, stability and electronic properties of small Fe x Cu y (x + y ≤ 5) bimetallic clusters: a DFT study. Eur. Phys. J. D 71, 284 (2017). https://doi.org/10.1140/epjd/e2017-80376-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80376-2

Keywords

Navigation