Skip to main content
Log in

Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann’s equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann’s equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Viehland, Comput. Phys. Commun. 142, 7 (2001)

    Article  ADS  Google Scholar 

  2. L.L. Alves, K. Bartschat, S.F. Biagi, M.C. Bordage, L.C. Pitchford, C.M. Ferreira, G.J.M. Hagelaar, W.L. Morgan, S. Pancheshnyi, A.V. Phelps, V. Puech, O. Zatsarinny, J. Phys. D: Appl. Phys. 46, 334002 (2013)

    Article  Google Scholar 

  3. J. de Urquijo, E. Basurto, A.M. Juárez, K.F. Ness, R.E. Robson, M.J. Brunger, R.D. White, J. Chem. Phys. 141, 014308 (2014)

    Article  ADS  Google Scholar 

  4. T. Makabe Z.L. Petrović, Plasma electronics, 2nd ed. (CRC Press, 2015)

  5. L.G.H. Huxley, R.W. Crompton, The diffusion and drift of electrons in gases (Wiley, New York, 1974)

  6. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988) p. 471

  7. Z.L. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Radenović, J. Phys. D: Appl. Phys. 42, 194002 (2009)

    Article  ADS  Google Scholar 

  8. L.A. Viehland, Int. J. Ion Mobil. Spectrom. 19, 11 (2015)

    Article  Google Scholar 

  9. P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C. H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D. Fernandez Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui, G. Zvereva, Plasma Source Sci. Technol. 25, 053002 (2016)

    Article  ADS  Google Scholar 

  10. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, J. Phys. D: Appl. Phys. 45, 253001 (2012)

    Article  ADS  Google Scholar 

  11. R.D. White, M.J. Brunger, N.A. Garland, R.E. Robson, K.F. Ness, G. Garcia, J. de Urquijo, S. Dujko, Z.L. Petrović, Eur. Phys. J. D 68, 125 (2014)

    Article  ADS  Google Scholar 

  12. P. Thorn, L. Campbell, M. Brunger, PMC Phys. B 2, 1 (2009)

    Article  ADS  Google Scholar 

  13. H. Wang, V.S. Sukhomlinov, I.D. Kaganovich, A.S. Mustafaev, Plasma Sources Sci. Technol. 26, 024002 (2017)

    Article  ADS  Google Scholar 

  14. M. Yousfi, N. Merbahi, A. Pathak, O. Eichwald, Fundam. Clin. Pharmacol. 28, 123 (2014)

    Article  Google Scholar 

  15. W. Tian, M.J. Kushner, J. Phys. D: Appl. Phys. 47, 165201 (2014)

    Article  ADS  Google Scholar 

  16. A. Lindsay, D. Graves, S. Shannon, J. Phys. D: Appl. Phys. 49, 235204 (2016)

    Article  ADS  Google Scholar 

  17. J.-P. Boeuf, L.L. Yang, L.C. Pitchford, J. Phys. D: Appl. Phys. 46, 015201 (2013)

    Article  ADS  Google Scholar 

  18. G. Garcia, Z.L. Petrovic, R.D. White, S.J. Buckman, IEEE Trans. Plasma Sci. 39, 2962 (2011)

    Article  ADS  Google Scholar 

  19. F. Salvat, J.M. Fernández-Varea, J. Sempau, J. Mazurier, Radiat. Environ. Biophys. 38, 15 (1999)

    Article  Google Scholar 

  20. V.A. Semenenko, J.E. Turner, T.B. Borak, Radiat. Environ. Biophys. 42, 213 (2003)

    Article  Google Scholar 

  21. S. Biagi, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom., Detect. Assoc. Equip. 421, 234 (1999)

    Article  ADS  Google Scholar 

  22. Z.L. Petrović, S. Marjanović, S. Dujko, A. Banković, G. Malović, S. Buckman, G. Garcia, R. White, M. Brunger, Appl. Radiat. Isot. 83, 148 (2013)

    Article  Google Scholar 

  23. Z. Ristivojevic, Z.L. Petrović, Plasma Source Sci. Technol. 21, 035001 (2012)

    Article  ADS  Google Scholar 

  24. A.H. Markosyan, J. Teunissen, S. Dujko, U. Ebert, Plasma Source Sci. Technol. 24, 065002 (2015)

    Article  ADS  Google Scholar 

  25. A.S. Mustafaev, V.S. Sukhomlinov, M.A. Ainov, Techn. Phys. 60, 1778 (2015)

    Article  ADS  Google Scholar 

  26. S. Dujko, R.D. White, Z.L. Petrović, R.E. Robson, Z.L. Petrovi, Plasma Source Sci. Technol. 20, 024013 (2011)

    Article  ADS  Google Scholar 

  27. S. Dujko, D. Bošnjaković, R.D. White, Z. Lj Petrović, Plasma Source Sci. Technol. 24, 054006 (2015)

    Article  ADS  Google Scholar 

  28. S. Dujko, R. White, Z. Petrović, J. Phys. D: Appl. Phys. 41, 245205 (2008)

    Article  ADS  Google Scholar 

  29. S. Dujko, Z.M. Raspopović, R.D. White, T. Makabe, Z.L. Petrović, Eur. Phys. J. D 68, 166 (2014)

    Article  ADS  Google Scholar 

  30. D. Bošnjaković, Z.L. Petrović, R.D. White, S. Dujko, J. Phys. D: Appl. Phys. 47, 435203 (2014)

    Article  ADS  Google Scholar 

  31. G.J. Boyle, W.J. Tattersall, D.G. Cocks, S. Dujko, R.D. White, Phys. Rev. A 91, 052710 (2015)

    Article  ADS  Google Scholar 

  32. R.D. White, R.E. Robson, K.F. Ness, Phys. Rev. E 60, 7457 (1999)

    Article  ADS  Google Scholar 

  33. R.D. White, R.E. Robson, K.F. Ness, B. Li, Phys. Rev. E 60, 2231 (1999)

    Article  ADS  Google Scholar 

  34. R.D. White, Phys. Rev. E 64, 56409 (2001)

    Article  ADS  Google Scholar 

  35. R.D. White, R.E. Robson, K.F. Ness, Comput. Phys. Commun. 142, 349 (2001)

    Article  ADS  Google Scholar 

  36. R.D. White, R.E. Robson, Phys. Rev. E 84, 031125 (2011)

    Article  ADS  Google Scholar 

  37. R.D. White, R.E. Robson, P. Nicoletopoulos, S. Dujko, Eur. Phys. J. D 66, 117 (2012)

    Article  ADS  Google Scholar 

  38. R.D. White, R.E. Robson, B. Schmidt, M. Morrison, J. Phys. D: Appl. Phys. 36, 3125 (2003)

    Article  ADS  Google Scholar 

  39. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

  40. D. Else, R. Kompaneets, S.V. Vladimirov, Phys. Plasmas 16, 062106 (2009)

    Article  ADS  Google Scholar 

  41. R.R. Arslanbekov, V.I. Kolobov, A.A. Frolova, Phys. Rev. E 88, 063301 (2013)

    Article  ADS  Google Scholar 

  42. L.A. Viehland, Chem. Phys. 179, 71 (1994)

    Article  ADS  Google Scholar 

  43. H.R. Skullerud, Plasma Sources Sci. Technol. 26, 045003 (2017)

    Article  ADS  Google Scholar 

  44. K. Kumar, Ann. Phys. 37, 113 (1966)

    Article  ADS  Google Scholar 

  45. K. Kumar, J. Math. Phys. 7, 671 (1966)

    Article  ADS  Google Scholar 

  46. K. Kumar, Aust. J. Phys. 20, 205 (1967)

    Article  ADS  Google Scholar 

  47. R. Robson K. Ness, Phys. Rev. A 33, 2068 (1986)

    Article  ADS  Google Scholar 

  48. K.F. Ness, R.E. Robson, Phys. Rev. A 34, 2185 (1986)

    Article  ADS  Google Scholar 

  49. R.E. Robson, K. Kumar, Aust. J. Phys. 24, 835 (1971)

    Article  ADS  Google Scholar 

  50. L.A. Viehland, E.A. Mason, Ann. Phys. 91, 499 (1975)

    Article  ADS  Google Scholar 

  51. L.A. Viehland, E.A. Mason, Ann. Phys. 110, 287 (1978)

    Article  ADS  Google Scholar 

  52. S.L. Lin, L.A. Viehland, E.A. Mason, Chem. Phys. 37, 411 (1979)

    Article  ADS  Google Scholar 

  53. S.L. Lin, R.E. Robson, E.A. Mason, J. Chem. Phys. 66, 435 (1979)

    Article  Google Scholar 

  54. T. Kihara, Rev. Mod. Phys. 25, 844 (1953)

    Article  ADS  Google Scholar 

  55. K. Kumar, R.E. Robson, Aust. J. Phys. 26, 157 (1973)

    Article  ADS  Google Scholar 

  56. D.C. Kelly, Phys. Rev. 119, 27 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  57. K.D. Knierim, J. Chem. Phys. 75, 1159 (1981)

    Article  ADS  Google Scholar 

  58. K.F. Ness, L.A. Viehland, Chem. Phys. 148, 225 (1990)

    Article  ADS  Google Scholar 

  59. K.F. Ness, J. Phys. D: Appl. Phys. 27, 1848 (1994)

    Article  ADS  Google Scholar 

  60. R.E. Robson, M.J. Brunger, S.J. Buckman, G. Garcia, Z.L. Petrović, R.D. White, Scient. Rep. 5, 12674 (2015)

    Article  ADS  Google Scholar 

  61. R.E. Robson, Introductory Transport Theory for Charged Particles in Gases (World Scientific Publishing, Singapore, 2006)

  62. S. Chapman T.G. Cowling,The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Mathematical Library (Cambridge University Press, 1970)

  63. L.C. Pitchford, S.V. ONeil, J.R. Rumble, Phys. Rev. A 23, 294 (1981)

    Article  ADS  Google Scholar 

  64. L.D. Landau, E.M. Lifshitz, Mechanics, Course of Theoretical Physics, 3rd ed. (Pergamon Press, Oxford, 1976), Vol. 1

  65. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics (Pergamon Press, Oxford, 1981), Vol. 10

  66. A.R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed. (Princeton University Press, Princeton, 1974)

  67. DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.0.13 of 2016-09-16, F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, eds.

  68. V.I. Lebedev, D. Laikov, Doklady Math. 59, 477 (1999)

    Google Scholar 

  69. R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos, B. Li, J. Phys. D: Appl. Phys. 42, 194001 (2009)

    Article  ADS  Google Scholar 

  70. D. Burnett, Proc. London Math. Soc. s2-39, 385 (1935)

    Article  Google Scholar 

  71. D. Burnett, Proc. London Math. Soc. s2-40, 382 (1936)

    Article  Google Scholar 

  72. W. Tattersall, D.G. Cocks, G.J. Boyle, S.J. Buckman, R.D. White, Phys. Rev. E 91, 043304 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. White.

Additional information

Contribution to the Topical Issue “Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, D.A., Cocks, D.G. & White, R.D. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas. Eur. Phys. J. D 71, 258 (2017). https://doi.org/10.1140/epjd/e2017-80297-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80297-0

Navigation