Skip to main content
Log in

Decoherence in quantum lossy systems: superoperator and matrix techniques

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 1999)

  2. T.L. Hill, Thermodynamics of small systems (Courier Corporation, 1962)

  3. C.W. Choo, Information Management for the Intelligent Organization: the Art of Scanning the Environment (Information Today Inc., 2002)

  4. W.R. Hamilton, On a General Method of Expressing the Paths of Light, of the Planets, by the Coefficients of a Characteristic Function (PD Hardy, 1833)

  5. W. Vogel, D.G. Welsch, Quantum Theory of Damping (Wiley Online Library, 2006)

  6. A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  7. W.G. Unruh, W.H. Zurek, Phys. Rev. D 40, 1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.A. Wheeler, W.H. Zurek, Quantum Theory of Measurement (Princeton University Press, Princeton, 1986)

  9. P.O. Lowdin, Phys. Rev. 97, 1474 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Gregoire, I. Prigogine, Self-organization in nonequilibrium systems (Wiley, New York, 1977)

  11. J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Lindblad, Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  13. A. Kossakowski, Rep. Math. Phys. 3, 247 (1972)

    Article  ADS  Google Scholar 

  14. H. Risken, Fokker-Planck Equation (Springer, Berlin, Heidelberg, 1984)

  15. P. Langevin, CR Acad. Sci. Paris 146, 530 (1908)

    Google Scholar 

  16. G.J. Milburn, Phys. Rev. A 44, 5401 (1991)

    Article  ADS  Google Scholar 

  17. H.M. Moya-Cessa, V. Bužek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  18. H.M. Moya-Cessa, Phys. Rep. 432, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers, Appl. Phys. Lett. 72, 1814 (1998)

    Article  ADS  Google Scholar 

  20. C.C. Gerry, Phys. Rev. A 59, 4095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Beige, S.F. Huelga, P.L. Knight, M.B. Plenio, R.C. Thompson, J. Mod. Opt. 47, 401 (2000)

    ADS  Google Scholar 

  22. M.J. Faghihi, M.K. Tavassoly, J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)

    Article  ADS  Google Scholar 

  23. V. Weisskopf, E. Wigner, Z. Phys. 63, 54 (1930)

    Article  ADS  Google Scholar 

  24. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, United Kingdom, 1997)

  25. J.G. Peixoto de Faria, M.C. Nemes, Phys. Rev. A 59, 3918 (1999)

    Article  ADS  Google Scholar 

  26. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  27. V. Gorini, A. Kossakowski, E.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  28. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdanpanah, N., Tavassoly, M.K. & Moya-Cessa, H.M. Decoherence in quantum lossy systems: superoperator and matrix techniques. Eur. Phys. J. D 71, 171 (2017). https://doi.org/10.1140/epjd/e2017-70701-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70701-2

Keywords

Navigation