Skip to main content
Log in

Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Multiply charged argon ions produced from decay of L-shell hole states by impact of a continuous beam of 3.5 keV electrons are studied for the first time using an energy resolved electron-ion coincidence technique. The TOF spectra of argon ions are measured in coincidence with 18-energy selected electrons emitted in a wide energy range (126–242 eV). The coincidence measurement between the energy selected electrons and the correlated ions specifies the individual decay channel for various multiply charged ions. New experimental data are obtained and reported on the correlation probability for production of argon ions with charge states 1+ to 4+ as a function of ejected electrons in the considered energy range. The relative correlation probability of producing different charge state ions and corresponding physical processes involved in their production are presented and discussed. It has been found that the maximum probability for production of Ar2+ ions correlated to ejected Auger electrons in the energy range of 205–209 eV is 100%. No theoretical predictions are available to compare with these results. The present study shows further that not only the auto-ionization and normal Auger transitions but also several other decay processes including Coster-Kronig transitions followed by Auger cascades with a fraction of shake process play important role in producing ions with charge states 1+ to 4+.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O. Krause, T.A. Carlson, Phys. Rev. 158, 18 (1967)

    Article  ADS  Google Scholar 

  2. T. Tonuma, A. Yagishita, H. Shibata, T. Koizumi, T. Matsuo, K. Shima, T. Mukoyama, H. Tawara, J. Phys. B 20, L31 (1987)

    Article  ADS  Google Scholar 

  3. Y. Tamenori, K. Okada, S. Nagaoka, T. Ibuki, S. Tanimoto, Y. Shimizu, A. Fujii, Y. Haga, H. Yoshida, H. Ohashi, I.H. Suzuki, J. Phys. B 35, 314 (2002)

    Article  Google Scholar 

  4. N. Saito, I.H. Suzuki, J. Phys. B 25, 1785 (1992)

    Article  ADS  Google Scholar 

  5. T.A. Carlson, W.E. Hunt, M.O. Krause, Phys. Rev. 151, 41 (1966)

    Article  ADS  Google Scholar 

  6. B. Adamczyk, J. Chem. Phys. 44, 4640 (1966)

    Article  ADS  Google Scholar 

  7. M.J. van der Wiel, T.M. El-Sherbini, L. Vriens, Physica 42, 411 (1969)

    Article  ADS  Google Scholar 

  8. S. Okudaira, Y. Kaneko, I. Kanomata, J. Phys. Soc. Jpn 28, 1536 (1970)

    Article  ADS  Google Scholar 

  9. T.M. El-Sherbini, M.J. Van der Wiel, F.J. de Heer, Physica 48, 157 (1970)

    Article  ADS  Google Scholar 

  10. R.K. Singh, R. Shanker, J. Phys. B 36, 1545 (2003)

    Article  ADS  Google Scholar 

  11. S. Mondal, R. Shanker, Phys. Rev. A 72, 052705 (2005)

    Article  ADS  Google Scholar 

  12. N. Saito, I.H. Suzuki, J. Electron Spectrosc. Relat. Phenomena 88-91, 65 (1998)

    Article  Google Scholar 

  13. J.C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R.T. Short, I.A. Sellin, D.W. Lindle, Phys. Rev. Lett. 65, 988 (1990)

    Article  ADS  Google Scholar 

  14. W. Eberhardt, S. Bernstorff, H.W. Jochims, S.B. Whitfield, B. Crasemann, Phys. Rev. A 38, 3808 (1988)

    Article  ADS  Google Scholar 

  15. G. Armen, J. Levin, I. Sellin, Phys. Rev. A 53, 772 (1996)

    Article  ADS  Google Scholar 

  16. D.V. Morgan, M. Sagurton, R.J. Bartlett, Phys. Rev. A 55, 1113 (1997)

    Article  ADS  Google Scholar 

  17. N. Saito, I.H. Suzuki, J. Phys. Soc. Jpn 66, 1979 (1997)

    Article  ADS  Google Scholar 

  18. B. Kammerling, B. Krassig, V. Schmidt, J. Phys. B 25, 3621 (1992)

    Article  ADS  Google Scholar 

  19. E. Shigemasa, T. Koizumi, Y. Itoh, T. Hayaishi, K. Okuno, A. Danjo, Y. Sato, A. Yagishita, Rev. Sci. Instrum. 63, 1505 (1992)

    Article  ADS  Google Scholar 

  20. R. Hippler, K. Saeed, A.J. Dumcan, H. Kleinpoppen, Phys. Rev. A 30, 3328 (1984)

    Article  ADS  Google Scholar 

  21. R.K. Singh, R. Hippler, R. Shanker, J. Phys. B 35, 3243 (2002)

    Article  ADS  Google Scholar 

  22. M.A. Chaudhry, A.J. Duncan, R. Hippler, H. Kleinpoppen, Phys. Rev. A 39, 530 (1989)

    Article  ADS  Google Scholar 

  23. R.K. Singh, S. Mondal, R. Shanker, J. Phys. B 36, 489 (2003)

    Article  ADS  Google Scholar 

  24. S. Mondal, R. Shanker, Phys. Rev. A 72, 062721 (2005)

    Article  ADS  Google Scholar 

  25. K. Bučar, M. Žitnik, Rad. Phys. Chem. 76, 487 (2007)

    Article  ADS  Google Scholar 

  26. H. Sambe, D.E. Ramaker, Chem. Phys. Lett. 128, 113 (1986)

    Article  ADS  Google Scholar 

  27. E. Krishnakumar, S.K. Srivastava, J. Phys. B 21, 1055 (1988)

    Article  ADS  Google Scholar 

  28. C. Ma, C.R. Sporleder, R.A. Bonham, Rev. Sci. Instrum. 62, 909 (1991)

    Article  ADS  Google Scholar 

  29. P. McCallion, M.B. Shah, H.B. Gilbody, J. Phys. B 25, 1061 (1992)

    Article  ADS  Google Scholar 

  30. D.P. Almeida, A.C. Fontes, I.S. Mattos, C.L. Godinho, J. Electron Spectrosc. Relat. Phenomena 67, 503 (1994)

    Article  Google Scholar 

  31. S. Brünken, C. Gerth, B. Kanngießer, T. Luhmann, M. Richter, P. Zimmermann, Phys. Rev. A 65, 042708 (2002)

    Article  ADS  Google Scholar 

  32. F. Von Busch, J. Doppelfeld, U. Alkemper, U. Kuetgens, S. Fritzsche, 93, 127 (1998)

    Google Scholar 

  33. U. Alkemper, J. Doppelfeld, F. von Busch, Phys. Rev. A 56, 2741 (1997)

    Article  ADS  Google Scholar 

  34. S. Ricz, Á. Kövér, M. Jurvansuu, D. Varga, J. Molnár, S. Aksela, Phys. Rev. A 65, 042707 (2002)

    Article  ADS  Google Scholar 

  35. P. Lablanquie, S.-M. Huttula, M. Huttula, L. Andric, J. Palaudoux, J.H.D. Eland, Y. Hikosaka, E. Shigemasa, K. Ito, F. Penent, Phys. Chem. Chem. Phys. 13, 18355 (2011)

    Article  Google Scholar 

  36. P. Lablanquie, L. Andric, J. Palaudoux, U. Becker, M. Braune, J. Viefhaus, J.H.D. Eland, F. Penent, J. Electron Spectrosc. Relat. Phenomena 156-158, 51 (2007)

    Article  Google Scholar 

  37. W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  38. http://www.roentdek.com/, RoentDek Handels GmbH (n.d.)

  39. L.O. Werme, T. Bergmark, K. Siegbahn, Physica Scripta 8, 149 (1973)

    Article  ADS  Google Scholar 

  40. W. Lotz, J. Opt. Soc. Am. 58, 915 (1968)

    Article  Google Scholar 

  41. F.P. Larkins, J. Phys. B 4, 14 (1971)

    Article  ADS  Google Scholar 

  42. J.A.R. Samson, W.C. Stolte, Z.X. He, J.N. Cutler, D. Hansen, Phys. Rev. A 54, 2099 (1996)

    Article  ADS  Google Scholar 

  43. T. Kylli, H. Aksela, O.-P. Sairanen, A. Hiltunen, S. Aksela, J. Phys. B 30, 3647 (1997)

    Article  ADS  Google Scholar 

  44. M.Y. Amusia, M.Y. Kuchiev, S.A. Sheinerman, S.I. Sheftel, J. Phys. B 10, L535 (1977)

    Article  ADS  Google Scholar 

  45. F. Von Busch, U. Kuetgens, J. Doppelfeld, S. Fritzsche, Phys. Rev. A 59, 2030 (1999)

    Article  ADS  Google Scholar 

  46. A. Hiltunen, T. Kylli, J. Mursu, O.-P. Sairanen, H. Aksela, S. Aksela, J. Electron Spectrosc. Relat. Phenomena 87, 203 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Shanker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Prajapati, S., Singh, B. et al. Electron excited multiply charged argon ions studied by means of an energy resolved electron-ion coincidence technique. Eur. Phys. J. D 71, 53 (2017). https://doi.org/10.1140/epjd/e2016-70583-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70583-8

Keywords

Navigation