Skip to main content
Log in

Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An ongoing discussion revolves around the question of what effect hydrogenation has on carbon backbone fragmentation in polycyclic aromatic hydrocarbons (PAHs). In order to shed more light on this issue, we have measured absolute single carbon loss cross sections in collisions between native or hydrogenated pyrene cations (C16H+ 10+m , m = 0, 6, 16) and He as functions of center-of-mass energies down to 20 eV. Classical molecular dynamics (MD) simulations give further insight into energy transfer processes and also yield m-dependent threshold energies for prompt (femtoseconds) carbon knockout. Such fast, non-statistical fragmentation processes dominate CH x -loss for native pyrene (m = 0), while much slower statistical fragmentation processes contribute significantly to single-carbon loss for the hydrogenated molecules (m = 6 and m = 16). The latter is shown by measurements of large CH x -loss cross sections far below the MD knockout thresholds for C16H+ 16 and C16H+ 26.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Allamandola, D.M. Hudgins, S.A. Sandford, Astrophys. J. Lett. 511, L115 (1999)

    Article  ADS  Google Scholar 

  2. A.G.G.M. Tielens, Annu. Rev. Astron. Astrophys. 46, 289 (2008)

    Article  ADS  Google Scholar 

  3. A.G.G.M. Tielens, Rev. Mod. Phys. 85, 1021 (2013)

    Article  ADS  Google Scholar 

  4. S. Denifl, S. Ptasińska, B. Sonnweber, P. Scheier, D. Liu, F. Hagelberg, J. Mack, L.T. Scott, T.D. Märk, J. Chem. Phys. 123, 104308 (2005)

    Article  ADS  Google Scholar 

  5. S. Denifl, B. Sonnweber, J. Mack, L. Scott, P. Scheier, K. Becker, T. Märk, Int.. J. Mass Spectrom. 249-250, 353 (2006)

    Article  Google Scholar 

  6. E. Rauls, L. Hornekær, Astrophys. J. 679, 531 (2008)

    Article  ADS  Google Scholar 

  7. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Astron. Astrophys. 510, A37 (2010)

    Article  ADS  Google Scholar 

  8. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, Astron. Astrophys. 510, A36 (2010)

    Article  ADS  Google Scholar 

  9. J. Postma, S. Bari, R. Hoekstra, A.G.G.M. Tielens, T. Schlathölter, Astrophys. J. 708, 435 (2010)

    Article  ADS  Google Scholar 

  10. A.I.S. Holm, H.A.B. Johansson, H. Cederquist, H. Zettergren, J. Chem. Phys. 134, 044301 (2011)

    Article  ADS  Google Scholar 

  11. H.A.B. Johansson et al., Phys. Rev. A 84, 043201 (2011)

    Article  ADS  Google Scholar 

  12. S. Martin, L. Chen, R. Brédy, G. Montagne, C. Ortega, T. Schlathölter, G. Reitsma, J. Bernard, Phys. Rev. A 85, 052715 (2012)

    Article  ADS  Google Scholar 

  13. S. Martin, J. Bernard, R. Brédy, B. Concina, C. Joblin, M. Ji, C. Ortega, L. Chen, Phys. Rev. Lett. 110, 063003 (2013)

    Article  ADS  Google Scholar 

  14. G. Reitsma, H. Zettergren, L. Boschman, E. Bodewits, R. Hoekstra, T. Schlathölter, J. Phys. B 46, 245201 (2013)

    Article  ADS  Google Scholar 

  15. J. Postma, R. Hoekstra, A.G.G.M. Tielens, T. Schlathölter, Astrophys. J. 783, 61 (2014)

    Article  ADS  Google Scholar 

  16. M.H. Stockett et al., Phys. Chem. Chem. Phys. 16, 21980 (2014)

    Article  Google Scholar 

  17. P.M. Mishra, J. Rajput, C.P. Safvan, S. Vig, U. Kadhane, J. Phys. B 47, 085202 (2014)

    Article  ADS  Google Scholar 

  18. B. West, F. Useli-Bacchitta, H. Sabbah, V. Blanchet, A. Bodi, P.M. Mayer, C. Joblin, J. Phys. Chem. A 118, 7824 (2014)

    Article  Google Scholar 

  19. R.I. Kaiser, D.S. Parker, A.M. Mebel, Annu. Rev. Phys. Chem. 66, 43 (2015)

    Article  ADS  Google Scholar 

  20. R. Delaunay et al., J. Phys. Chem. Lett. 6, 1536 (2015)

    Article  Google Scholar 

  21. M. Gatchell et al., Phys. Rev. A 92, 050702(R) (2015)

    Article  ADS  Google Scholar 

  22. T. Chen et al., J. Chem. Phys. 140, 224306 (2014)

    Article  ADS  Google Scholar 

  23. M. Gatchell et al., Int. J. Mass Spectrom. 365–366, 260 (2014)

    Article  Google Scholar 

  24. M.H. Stockett et al., Phys. Rev. A 89, 032701 (2014)

    Article  ADS  Google Scholar 

  25. M.H. Stockett, M. Gatchell, T. Chen, N. de Ruette, L. Giacomozzi, M. Wolf, H.T. Schmidt, H. Zettergren, H. Cederquist, J. Phys. Chem. Lett. 6, 4504 (2015)

    Article  Google Scholar 

  26. M.H. Stockett et al., J. Phys.: Conf. Ser. 635, 012036 (2015)

    Google Scholar 

  27. S. Cazaux, L. Boschman, N. Rougeau, G. Reitsma, R. Hoekstra, D. Teillet-Billy, S. Morisset, M. Spaans, T. Schlathölter, Sci. Rep. 6, 19835 (2016)

    Article  ADS  Google Scholar 

  28. G. Reitsma, L. Boschman, M.J. Deuzeman, O. González-Magaña, S. Hoekstra, S. Cazaux, R. Hoekstra, T. Schlathölter, Phys. Rev. Lett. 113, 053002 (2014)

    Article  ADS  Google Scholar 

  29. R.D. Thomas et al., Rev. Sci. Instrum. 82, 065112 (2011)

    Article  ADS  Google Scholar 

  30. H.T. Schmidt et al., Rev. Sci. Instrum. 84, 055115 (2013)

    Article  ADS  Google Scholar 

  31. N. Haag, Ph.D. thesis, Stockholm University, 2011

  32. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  33. http://lammps.sandia.gov

  34. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  35. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  36. F. de Brito Mota, J.F. Justo, A. Fazzio, J. Appl. Phys. 86, 1843 (1999)

    Article  ADS  Google Scholar 

  37. J.F. Ziegler, J.P. Biersack, U. Littmark, In The Stopping and Range of Ions in Matter (Pergamon, New York, 1985), Vol. 1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wolf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolf, M., Giacomozzi, L., Gatchell, M. et al. Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold. Eur. Phys. J. D 70, 85 (2016). https://doi.org/10.1140/epjd/e2016-60735-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60735-3

Navigation