Skip to main content
Log in

Entangled graphs: a classification of four-qubit entanglement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We use the concept of entangled graphs with weighted edges to present a classification for four-qubit entanglement which is based neither on the LOCC nor the SLOCC. Entangled graphs, first introduced by Plesch et al. [Phys. Rev. A 67, 012322 (2003)], are structures such that each qubit of a multi-qubit system is represented as a vertex and an edge between two vertices denotes bipartite entanglement between the corresponding qubits. Our classification is based on the use of generalized Schmidt decomposition of pure states of multi-qubit systems. We show that for every possible entangled graph one can find a pure state such that the reduced entanglement of each pair, measured by concurrence, represents the weight of the corresponding edge in the graph. We also use the concept of tripartite and quadripartite concurrences as a proper measure of global entanglement of the states. In this case a circle including the graph indicates the presence of global entanglement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. E. Schrödinger, Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)

  4. E. Schmidt, Math. Ann. 63, 433 (1906)

    Article  Google Scholar 

  5. A. Peres, Phys. Lett. A 202, 16 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Acín et al., Phys. Rev. Lett. 85, 1560 (2000)

    Article  ADS  Google Scholar 

  7. A. Acín et al., J. Phys. A 34, 6725 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. H.A. Carteret, A. Higuchi, A. Sudbery, J. Math. Phys. 41, 7932 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. D.M. Greenberger, M. Horn, A. Zeilinger, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic Publishers, Dordrecht, Holland, 1989), pp. 69–72

  10. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Acín et al., Phys. Rev. Lett. 87, 040401 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Sabín, G. García-Alcaine, Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.I. de Vicente et al., Phys. Rev. Lett. 108, 060501 (2012)

    Article  ADS  Google Scholar 

  14. X. Li, D. Li, Phys. Rev. A 88, 022306 (2013)

    Article  ADS  Google Scholar 

  15. F. Verstraete et al., Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Lamata et al., Phys. Rev. A 75, 022318 (2007)

    Article  ADS  Google Scholar 

  17. Y. Cao, A.M. Wang, Eur. Phys. J. D 44, 159 (2007)

    Article  ADS  Google Scholar 

  18. D. Li et al., Quant. Inf. Comput. 9, 0778 (2009)

    Google Scholar 

  19. L. Borsten et al., Phys. Rev. Lett. 105, 100507 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Jung, D.K. Park, Quant. Inf. Comput. 14, 0937 (2014)

    MathSciNet  Google Scholar 

  21. D.K. Park, Phys. Rev. A 89, 052326 (2014)

    Article  ADS  Google Scholar 

  22. W. Dür, Phys. Rev. A 63, 020303(R) (2001)

    Article  ADS  Google Scholar 

  23. M. Plesch, V. Bužek, Phys. Rev. A 67, 012322 (2003)

    Article  ADS  Google Scholar 

  24. M. Plesch et al., J. Phys. A 37, 1843 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  26. P.J. Love et al., Quant. Inf. Process. 6, 187 (2007)

    Article  MathSciNet  Google Scholar 

  27. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Gharahi Ghahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahi, M., Akhtarshenas, S. Entangled graphs: a classification of four-qubit entanglement. Eur. Phys. J. D 70, 54 (2016). https://doi.org/10.1140/epjd/e2016-60729-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60729-1

Keywords

Navigation