Skip to main content
Log in

Sudden perturbation approximations for interaction of atoms with intense ultrashort electromagnetic pulses

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The response of an atom to the action of a pulse shorter than the Kepler period of the optically-active electron is often treated analytically using the sudden-perturbation approximation (SPA). It relies on the truncation of the evolution operator expansion in a series over the dimensionless parameter ε sys τ L, where ε sys is the system-dependent characteristic energy and τ L is the pulse duration. We examine the SPA with the use of a basis-based solution of the time-dependent Schrödinger equation (TDSE) for the case of a hydrogen atom interacting with two different types of ultrashort pulses, a half-cycle pulse and a few-cycle pulse. The length-gauge form of the electron-field interaction potential is used. The SPA transition probabilities are shown to deviate slightly but systematically from the correct values for the positive-energy states in the region where the sudden-perturbation condition is violated. It is shown that the SPA expectation value of the electron displacement as a function of time differ qualitatively from what follows from the ab initio TDSE solution. Nevertheless, the SPA is shown to be a good approximation for the description of the expectation value of the electron momentum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, Z. Chang, Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  2. T. Tajima, D. Habs, G.A. Mourou, Opt. Photon. 5, 24 (2010)

    Article  Google Scholar 

  3. A. Kaplan, Lasers Eng. 24, 3 (2013)

    Google Scholar 

  4. A. Ipp, C.H. Keitel, J. Evers, Phys. Rev. Lett. 103, 152301 (2009)

    Article  ADS  Google Scholar 

  5. K.T. Hecht, in Quantum Mechanics (Springer, 2000), pp. 561–571

  6. A.M. Dykhne, G.L. Yudin, Sov. Phys.-Usp. 20, 80 (1977)

    Article  ADS  Google Scholar 

  7. A.M. Dykhne, G.L. Yudin, Sov. Phys.-Usp. 21, 549 (1978)

    Article  ADS  Google Scholar 

  8. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Klarsfeld, J. Oteo, Phys. Rev. A 45, 3329 (1992)

    Article  ADS  Google Scholar 

  10. P. Krstic, Y. Hahn, Phys. Rev. A 48, 4515 (1993)

    Article  ADS  Google Scholar 

  11. P. Krstic, Y. Hahn, Phys. Rev. A 50, 4629 (1994)

    Article  ADS  Google Scholar 

  12. P. Krstić, Y. Hahn, Phys. Lett. A 192, 47 (1994)

    Article  ADS  Google Scholar 

  13. M. Klaiber, D. Dimitrovski, J.S. Briggs, Phys. Rev. A 79, 043402 (2009)

    Article  ADS  Google Scholar 

  14. A.M. Dykhne, G.L. Yudin, Sudden perturbations and quantum evolution (Redaktsiya zhurnala “Uspekhi fizicheskikh nauk”, Moscow, 1996)

  15. S. Blanes, F. Casas, J. Oteo, J. Ros, Phys. Rep. 470, 151 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. V.I. Matveev, Technical Phys. Lett. 28, 874 (2002)

    Article  ADS  Google Scholar 

  17. V.I. Matveev, Zh. Éksp. Teor. Fiz. 124, 1023 (2003) [J. Exp. Theor. Phys. 97, 915 2003]

    Google Scholar 

  18. D. Dimitrovski, E.A. Solov’ev, J.S. Briggs, Phys. Rev. Lett. 93, 083003 (2004)

    Article  ADS  Google Scholar 

  19. D. Dimitrovski, E.A. Solov’ev, J.S. Briggs, Phys. Rev. A 72, 043411 (2005)

    Article  ADS  Google Scholar 

  20. A.V. Lugovskoy, I. Bray, Phys. Rev. A 72, 063402 (2005)

    Article  ADS  Google Scholar 

  21. A.V. Lugovskoy, I. Bray, Phys. Rev. A 73, 063401 (2006)

    Article  ADS  Google Scholar 

  22. M. Klaiber, D. Dimitrovski, J.S. Briggs, J. Phys. B 41, 175002 (2008)

    Article  ADS  Google Scholar 

  23. M. Eseev, V. Matveev, N. Abikulova, Opt. Spectrosc. 106, 198 (2009)

    Article  ADS  Google Scholar 

  24. V. Matveev, D. Matrasulov, J. Exp. Theor. Phys. Lett. 96, 628 (2013)

    Article  Google Scholar 

  25. M. Eseev, V. Matveev, J. Exp. Theor. Phys. 117, 820 (2013)

    Article  ADS  Google Scholar 

  26. D. Makarov, V. Matveev, J. Exp. Theor. Phys. 117, 784 (2013)

    Article  ADS  Google Scholar 

  27. V. Matveev, D. Makarov, J. Exp. Theor. Phys. Lett. 99, 258 (2014)

    Article  Google Scholar 

  28. D. Makarov, V. Matveev, J. Exp. Theor. Phys. 119, 600 (2014)

    Article  ADS  Google Scholar 

  29. M. Klaiber, D. Dimitrovski, Phys. Rev. A 91, 023401 (2015)

    Article  ADS  Google Scholar 

  30. A. Lugovskoy, I. Bray, Phys. Rev. A 77, 023420 (2008)

    Article  ADS  Google Scholar 

  31. R. Parzynski, M. Sobczak, Acta Physica Polonica A 103, 13 (2001)

    ADS  Google Scholar 

  32. R. Parzynski, M. Sobczak, Phys. Rev. A 65, 045401 (2002)

    Article  ADS  Google Scholar 

  33. I. Bray, D. Fursa, A. Kadyrov, A. Stelbovics, A. Kheifets, A. Mukhamedzhanov, Phys. Rep. 520, 135 (2012)

    Article  ADS  Google Scholar 

  34. L.B. Madsen, Phys. Rev. A 65, 053417 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. D.B. Milosevic, G.G. Paulus, D. Bauer, W. Becker, J. Phys. B 39, R203 (2006)

    Article  ADS  Google Scholar 

  36. Y.C. Han, L.B. Madsen, Phys. Rev. A 81, 063430 (2010)

    Article  ADS  Google Scholar 

  37. D. Bauer, D. Milošević, W. Becker, Phys. Rev. A 72, 023415 (2005)

    Article  ADS  Google Scholar 

  38. D. Dimitrovski, J.R. Götz, J.S. Briggs, J. Phys. B 40, 4355 (2007)

    Article  ADS  Google Scholar 

  39. D. Makarov, V. Matveev, Opt. Spectrosc. 116, 163 (2014)

    Article  ADS  Google Scholar 

  40. A. Voitkiv, J. Ullrich, Relativistic Collisions of Structured Atomic Particles (Springer Science & Business Media, 2008), Vol. 49

  41. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relatavistic Theory, Vol. 3 of Course of theoretical physics, 3rd edn. (Pergamon Press, Oxford, New York, 1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Lugovskoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugovskoy, A., Bray, I. Sudden perturbation approximations for interaction of atoms with intense ultrashort electromagnetic pulses. Eur. Phys. J. D 69, 271 (2015). https://doi.org/10.1140/epjd/e2015-60471-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60471-2

Keywords

Navigation