Skip to main content
Log in

Structural and mechanic properties of RFeO3 with R = Y, Eu and La perovskites: a first-principles calculation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The structural and elastic properties of the RFeO3 phases with R = Y, Eu, and La were investigated using first-principles plane-wave pseudopotential density functional theory with the generalized gradient approximation (GGA). The ground state properties (equilibrium cell constants) agree well with the reported experimental results. Our results showed an increase in the unit-cell volume (V) with the increase of ionic radii. We calculate a set of elastic parameters (bulk modulus B VRH , shear modulus G VRH , Young’s modulus E VRH and Poisson’s ratio ν) in the framework of the Voigt-Reuss-Hill (VRH) approximation. The sound velocities (v l , v t ) and Debye temperature (θ D ) were calculated using these elastic moduli. The calculated elastic constants were positives and satisfy the well-known Born criteria, indicating that the orthorhombic structure is stable. Finally, the ratio G VRH /B VRH suggests that the RFeO3 phases are ductile in nature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mineral Data Publishing, version 1, (2005)

  2. N.N. Toan, S. Saukko, V. Lantto, Physica B 327, 279 (2003)

    Article  ADS  Google Scholar 

  3. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993)

    Article  ADS  Google Scholar 

  4. I. W rnhus, P.E. Vullum, R. Holmestad, T. Grande, K. Wiik, Solid State Ionics 176, 783 (2005)

    Google Scholar 

  5. F. Bidrawn, S. Lee, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 155, B660 (2008)

    Article  Google Scholar 

  6. N.A. Spaldin, Topics Appl. Phys. 105, 175 (2007)

    Article  Google Scholar 

  7. D.I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006)

    Article  ADS  Google Scholar 

  8. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  ADS  Google Scholar 

  9. J.F. Craig, K.M. Rabe, Phys. Rev. Lett. 97, (2006)

  10. June Hyuk Lee, et al., Nat. Lett. 466, 954 (2010)

    Article  ADS  Google Scholar 

  11. A. Wu, H. Shen, J. Xu, Z Wang, L. Jiang, L. Luo, S. Yuan, S. Cao, H. Zhang, Bull. Mater. Sci. 35, 259 (2012)

    Article  ADS  Google Scholar 

  12. A.V. Soldatov, N.A. Povahzynaja, I.G. Shvejtzer, Solid State Commun. 97, 53 (1996)

    Article  ADS  Google Scholar 

  13. J. Luning, F. Nolting, A. Scholl, H. Ohldag, J.W. Seo, J. Fompeyrine, J.-P. Locquet, J. Stohr, Phys. Rev. B 67, 214433 (2003)

    Article  ADS  Google Scholar 

  14. S. Qing-Gong, L. Li-Wei, Z. Hui, Y. Hui-Yu, D. Quan-Guo, Acta Physica Sinica 61, 107102 (2012)

    Google Scholar 

  15. Q. Zhang, S. Yunoki, J. Phys.: Conf. Ser. 400, 032126 (2012)

    ADS  Google Scholar 

  16. N. Singh, J.Y. Rhee, J. Korean Phys. Soc. 53, 806 (2008)

    Article  ADS  Google Scholar 

  17. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928), pp. 739−754

  18. A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)

    Google Scholar 

  19. R. Hill, Proc. Phys. Soc. 65, 349 (1952)

    Article  ADS  Google Scholar 

  20. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  21. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  22. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  23. M.C. Payne, M.P. Teter, D.C. Allan, D.C. Allan, T.A. Arias, J.D.J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. B. Pfrommer, G.M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  ADS  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  27. D.R. Hammann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    Article  ADS  Google Scholar 

  28. Y.S. Zhao, D.J. Weidner, J.B. Parise, D.E. Cox, Phys. Earth Planet. Inter. 17, 17 (1993)

    Article  ADS  Google Scholar 

  29. R.D. Shannon, Acta Crystallogr. A 224, 751 (1976)

    Article  ADS  Google Scholar 

  30. D. du Boulay, E.N. Maslen, V.A. Streltsov, N. Ishizawa, Acta Crystallogr. B 51, 921 (1995)

    Article  Google Scholar 

  31. R. Maiti, S. Basu, D. Chakravorty. J. Magn. Magn. Mater. 321, 3274 (2009)

    Article  ADS  Google Scholar 

  32. K.T. Jacob, G. Rajitha, Solid State Ionics 32, 32 (2012)

    Article  Google Scholar 

  33. M. Marezio, J.P. Remeika, P.D. Dernier, Acta Crystallogr. B 26, 2008 (1970)

    Article  Google Scholar 

  34. G.J. McCarthy, R.D. Fischer, J. Solid State Chem. 4, 340 (1972)

    Article  ADS  Google Scholar 

  35. M. Marezio, P.D. Dernier, Mater. Res. Bull. 6, 23 (1971)

    Article  Google Scholar 

  36. L. Mark, Crystal structure and defect property predictions in ceramic material (Imperial College, London, 2005)

  37. M. Romero, R.W. Gómez, V. Marquina, J.L. Pérez-Mazariego, R. Escamilla, Physica B 443, 90 (2014)

    Article  ADS  Google Scholar 

  38. J.F. Nye, Physical Properties of Crystals (Claredon Press, Oxford, 1985)

  39. M. Derras, N. Hamdad, Results Phys., 3, 61 (2013)

    Article  ADS  Google Scholar 

  40. G. Kh. Rozenberg, M.P. Pasternak, W.M. Xu, L.S. Dubrovinsky, S. Carlson, R.D. Taylor, Europhys. Lett. 71, 228 (2005)

    Article  ADS  Google Scholar 

  41. M. Etter, M. Muller, M. Hanfland, R.E. Dinnebier, Acta Crystallogr. B 70, 452 (2014)

    Article  Google Scholar 

  42. D.H. Chung, W.R. Buessem, F.W. Vahldiek, in Anisotropy in Single Crystal Refractory Compounds, edited by S.A. Mersol (Plenum Press, New York, 1968), p. 217

  43. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metals and Hard Mater. 33, 93 (2012)

    Article  Google Scholar 

  44. L.O. Anderson, Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  45. J.P. Poirier, Introduction to the Physics of the Earthś Interior (Cambridge University Press, 2000)

  46. S.C. Parida, S. K Rakshit, Ziley Singh, J. Solid State Chem. 181, 101 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, M., Escamilla, R., Marquina, V. et al. Structural and mechanic properties of RFeO3 with R = Y, Eu and La perovskites: a first-principles calculation. Eur. Phys. J. D 69, 177 (2015). https://doi.org/10.1140/epjd/e2015-60186-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60186-4

Keywords

Navigation