Skip to main content
Log in

Melting of crystalline Si nanoparticle investigated by simulation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present work, we use molecular dynamics (MD) simulations to investigate melting of the crystalline Si nanoparticle. Atoms in the nanoparticle interact with each other via the Stillinger-Weber potential. Two heating rates are used. We find that melting of the nanoparticle occurs via propagation of quasi-liquid layer from the surface into the core of the nanoparticle until this layer reaches the critical thickness. We find heating rate affects on mechanism of melting of Si nanoparticle, i.e. coexistence of the two melting mechanisms (homogeneous and heterogeneous ones) occurs if low heating rate is used and it is unlike that proposed in the past. Size affects on melting of Si nanoparticle are found and discussed. In addition, we find that the global bond order parameters Q l can be used to detect melting of Si system unlike some calculations presented in the past.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Waseda, K. Suzuki, Z. Phys. B 20, 339 (1975)

    Article  ADS  Google Scholar 

  2. J.P. Gabathuler, S. Steeb, Z. Naturforsch. 34a, 1314 (1979)

    ADS  Google Scholar 

  3. M. Davidovic, M. Stojic, Dj. Jovic, J. Phys. C 16, 2053 (1983)

    Article  ADS  Google Scholar 

  4. W.D. Luedtke, U. Landman, Phys. Rev. B 37, 4656 (1988)

    Article  ADS  Google Scholar 

  5. M.R. Zachariah, M.J. Carrier, J. Phys. Chem. 100, 14856 (1996)

    Article  Google Scholar 

  6. P. Ganesh, M. Widom, Phys. Rev. Lett. 102, 075701 (2009)

    Article  ADS  Google Scholar 

  7. T. Morishita, Phys. Rev. Lett. 93, 055503 (2004)

    Article  ADS  Google Scholar 

  8. R. Biswas, G.S. Grest, C.M. Soukoulis, Phys. Rev. B 36, 7437 (1987)

    Article  ADS  Google Scholar 

  9. I. Kwon, R. Biswas, C.M. Soukoulis, Phys. Rev. B 45, 3332 (1992)

    Article  ADS  Google Scholar 

  10. S. Sastry, C.A. Angell, Nat. Mater. 2, 739 (2003)

    Article  ADS  Google Scholar 

  11. F.S. Kahn, J.Q. Broughton, Phys. Rev. B 39, 3688 (1989)

    Article  ADS  Google Scholar 

  12. H. Balmane, T. Halicioglu, T.A. Tiller, Phys. Rev. B 46, 2250 (1992)

    Article  ADS  Google Scholar 

  13. E. Kaxiras, K. Jackson, Phys. Rev. Lett. 71, 727 (1993)

    Article  ADS  Google Scholar 

  14. K. Kobayashi, S. Nagase, Bull. Chem. Soc. Jpn 66, 3334 (1993)

    Article  Google Scholar 

  15. N. Binggeli, J.R. Chelikowsky, Phys. Rev. B 50, 11764 (1994)

    Article  ADS  Google Scholar 

  16. K.C. Fang, C.I. Weng, Nanotechnology 16, 250 (2005)

    Article  ADS  Google Scholar 

  17. F.H. Stillinger, T.A. Waber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  18. E.G. Noya, J.P.K. Doye, F. Calvo, Phys. Rev. B 73, 125407 (2006)

    Article  ADS  Google Scholar 

  19. A.E. Galashev, V.A. Polukhin, I.A. Izmodenov, O.R. Rakhmanova, Glass Phys. Chem. 32, 99 (2006)

    Article  Google Scholar 

  20. M.D. Kluge, J.R. Ray, A. Rahman, Phys. Rev. B 36, 4234 (1987)

    Article  ADS  Google Scholar 

  21. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983)

  22. S.R. Stifller, M.O. Thompson, Phys. Rev. Lett. 60, 2519 (1988)

    Article  ADS  Google Scholar 

  23. E.J. Albenze, P. Clancy, Mol. Simul. 13, 11 (2005)

    Article  Google Scholar 

  24. F.F. Abraham, J.Q. Broughton, Phys. Rev. Lett. 56, 734 (1986)

    Article  ADS  Google Scholar 

  25. J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Phys. Rev. B 58, 2539 (1998)

    Article  ADS  Google Scholar 

  26. U. Landman, W.D. Luedtke, R.N. Barnett, C.L. Cleveland, M.W. Ribarsky, E. Arnold, S. Ramesh, H. Baumgart, A. Martinez, B. Khan, Phys. Rev. Lett. 56, 155 (1986)

    Article  ADS  Google Scholar 

  27. M.Z. Bazant, E. Kaxiras, J.F. Justo, Mat. Res. Symp. Proc. 491, 339 (1998)

    Article  Google Scholar 

  28. D.M. Macowiecki, J.B. Holt, Mater. Sci. Res. 13, 279 (1979)

    Google Scholar 

  29. P.B. Griffin, P.M. Fahey, J.D. Plummer, R.W. Dutton, Appl. Phys. Lett. 47, 319 (1985)

    Article  ADS  Google Scholar 

  30. A. Mainwood, Mater. Sci. Forum 196, 1589 (1995)

    Google Scholar 

  31. K. Kakimoto, J. Appl. Phys. 77, 4122 (1995)

    Article  ADS  Google Scholar 

  32. F.A. Lindemann, Z. Phys. 11, 609 (1910)

    MATH  Google Scholar 

  33. P.T. Dinda, G.V. Tsinganos, N. Flytzanis, A.D. Mistriotis, Phys. Rev. B 51, 13697 (1995)

    Article  ADS  Google Scholar 

  34. H.M. Flores-Ruiz, G.G.J. Naumis, Chem. Phys. 131, 154501 (2009)

    ADS  Google Scholar 

  35. V.V. Hoang, D. Ganguli, Phys. Rep. 518, 81 (2012)

    Article  ADS  Google Scholar 

  36. A. Pavlovska, K. Faulian, E. Bauer, Surf. Sci. 221, 233 (1989)

    Article  ADS  Google Scholar 

  37. J.G. Dash, A.W. Rempel, J.S. Wettlaufer, Rev. Mod. Phys. 78, 695 (2006)

    Article  ADS  Google Scholar 

  38. H. Reiss, I.B. Wilson, J. Colloid Sci. 3, 551 (1948)

    Article  Google Scholar 

  39. C.R.M. Wronski, J. Appl. Phys. 18, 1731 (1967)

    Google Scholar 

  40. P.R. Couchman, W.A. Jesser, Nature 269, 481 (1977)

    Article  ADS  Google Scholar 

  41. V.P. Skripov, V.P. Koverda, V.N. Skokov, Phys. Stat. Sol. A 66, 109 (1981)

    Article  ADS  Google Scholar 

  42. B. Pluis, A.W. Denier van der Gon, J.W.M. Frenken, J.F. van der Veen, Phys. Rev. Lett. 59, 2678 (1987)

    Article  ADS  Google Scholar 

  43. D. Schebarchov, S.C. Hendy, Phys. Rev. Lett. 95, 116101 (2005)

    Article  ADS  Google Scholar 

  44. J.F. van der Veen, Surf. Sci. 5, 1 (2005)

    Article  ADS  Google Scholar 

  45. Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)

    Article  Google Scholar 

  46. W. Hu, S. Xiao, J. Yang, Z. Zhang, Eur. Phys. J. B 45, 547 (2005)

    Article  ADS  Google Scholar 

  47. L.V. Sang, V.V. Hoang, N.T.T. Hang, Eur. Phys. J. D 67, 64 (2013)

    Article  ADS  Google Scholar 

  48. L.V. Sang, T.T.T. Huong, L.N.T. Minh, Eur. Phys. J. D 68, 292 (2014)

    Article  ADS  Google Scholar 

  49. P.Z. Pawlow, Z. Phys. Chem. Abt. A 65, 545 (1909)

    Google Scholar 

  50. P.A. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  51. D. Daisenberger, M. Wilson, P.F. McMillan, R.Q. Cabrera, M.C. Wilding, D. Machon, Phys. Rev. B 75, 224118 (2007)

    Article  ADS  Google Scholar 

  52. V.V. Hoang, T.Q. Dong, Phys. Rev. B 84, 174204 (2011)

    Article  ADS  Google Scholar 

  53. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 26, 784 (1983)

    Article  ADS  Google Scholar 

  54. C.L. Kuo, P. Clancy, J. Phys. Chem. B 109, 13743 (2005)

    Article  Google Scholar 

  55. T.F. Middleton, D.J. Wales, Phys. Rev. B 64, 024205 (2001)

    Article  ADS  Google Scholar 

  56. V.M. Glazov, S.N. Chizhevskaya, N.N. Glagoleva, Liquid Semiconductors (Plenum Press, New York, 1969)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Van Sang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, L.V., Hoang, V.V. & Tranh, D.T.N. Melting of crystalline Si nanoparticle investigated by simulation. Eur. Phys. J. D 69, 208 (2015). https://doi.org/10.1140/epjd/e2015-60153-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60153-1

Keywords

Navigation