Skip to main content
Log in

Normal form expansions and thermal decay rates of Bose-Einstein condensates with short- and long-range interaction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The thermally induced coherent collapse of Bose-Einstein condensates at finite temperature is the dominant decay mechanism near the critical scattering length in condensates with at least partially attractive interaction. The collapse dynamics out of the ground state is mediated by a transition state whose properties determine the corresponding decay rate or lifetime of the condensate. In this paper, we perform normal form expansions of the ground and the transition state of condensates with short-range scattering interaction as well as with anisotropic and long-range dipolar interaction in a variational framework. This method allows one to determine the local properties of these states, i.e. their mean-field energy, their normal modes, the coupling between different modes, and the structure of the reaction channel to any desired order. We discuss the physical interpretation of the transition state as a certain density distribution of the atomic cloud and the behavior of the single normal form contributions in dependence on the s-wave scattering length. Moreover, we investigate the convergence of the local normal form when using extended Gaussian variational approaches, and present the condensate’s decay rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  5. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  6. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012)

    Article  ADS  Google Scholar 

  7. P. Pedri, L. Santos, Phys. Rev. Lett. 95, 200404 (2005)

    Article  ADS  Google Scholar 

  8. R. Nath, P. Pedri, L. Santos, Phys. Rev. Lett. 102, 050401 (2009)

    Article  ADS  Google Scholar 

  9. I. Tikhonenkov, B.A. Malomed, A. Vardi, Phys. Rev. Lett. 100, 090406 (2008)

    Article  ADS  Google Scholar 

  10. O. Dutta, P. Meystre, Phys. Rev. A 75, 053604 (2007)

    Article  ADS  Google Scholar 

  11. S. Ronen, D.C.E. Bortolotti, J.L. Bohn, Phys. Rev. Lett. 98, 030406 (2007)

    Article  ADS  Google Scholar 

  12. K. Góral, K. Rzazewski, T. Pfau, Phys. Rev. A 61, 051601 (2000)

    Article  ADS  Google Scholar 

  13. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, T. Pfau, Nat. Phys. 4, 218 (2008)

    Article  Google Scholar 

  14. L. Santos, G.V. Shlyapnikov, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000)

    Article  ADS  Google Scholar 

  15. K. Góral, L. Santos, Phys. Rev. A 66, 023613 (2002)

    Article  ADS  Google Scholar 

  16. L. Santos, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003)

    Article  ADS  Google Scholar 

  17. R.M. Wilson, S. Ronen, J.L. Bohn, H. Pu, Phys. Rev. Lett. 100, 245302 (2008)

    Article  ADS  Google Scholar 

  18. J. Metz, T. Lahaye, B. Fröhlich, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, M. Ueda, New J. Phys. 11, 055032 (2009)

    Article  ADS  Google Scholar 

  19. T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, M. Ueda, Phys. Rev. Lett. 101, 080401 (2008)

    Article  ADS  Google Scholar 

  20. H.T.C. Stoof, J. Stat. Phys. 87, 1353 (1997)

    Article  ADS  Google Scholar 

  21. K. Marquardt, P. Wieland, R. Häfner, H. Cartarius, J. Main, G. Wunner, Phys. Rev. A 86, 063629 (2012)

    Article  ADS  Google Scholar 

  22. S. Hensler, J. Werner, A. Griesmaier, P.O. Schmidt, A. Görlitz, T. Pfau, K. Rzazewski, S. Giovanazzi, Appl. Phys. B 77, 765 (2003)

    Article  ADS  Google Scholar 

  23. C. Huepe, S. Métens, G. Dewel, P. Borckmans, M.E. Brachet, Phys. Rev. Lett. 82, 1616 (1999)

    Article  ADS  Google Scholar 

  24. C. Huepe, L.S. Tuckerman, S. Métens, M.E. Brachet, Phys. Rev. A 68, 023609 (2003)

    Article  ADS  Google Scholar 

  25. A. Junginger, J. Main, G. Wunner, M. Dorwarth, J. Phys. A 45, 155201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Junginger, M. Dorwarth, J. Main, G. Wunner, J. Phys. A 45, 155202 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Junginger, J. Main, G. Wunner, T. Bartsch, Phys. Rev. A 86, 023632 (2012)

    Article  ADS  Google Scholar 

  28. A. Junginger, M. Kreibich, J. Main, G. Wunner, Phys. Rev. A 88, 043617 (2013)

    Article  ADS  Google Scholar 

  29. P. Pechukas, Ann. Rev. Phys. Chem. 32, 159 (1981)

    Article  ADS  Google Scholar 

  30. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  31. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100, 12771 (1996)

    Article  Google Scholar 

  32. H. Waalkens, R. Schubert, S. Wiggins, Nonlinearity 21, R1 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. A. Junginger, J. Main, G. Wunner, arxiv:1409.0673 (2014)

  34. T. Schaller, Bachelor thesis, Universität Stuttgart (2014), http://www.itp1.uni-stuttgart.de/publikationen/ abschlussarbeiten/schallerbachelor2014.pdf

  35. G. Hämmerling, Bachelor thesis, Universität Stuttgart (2014), http://www.itp1.uni-stuttgart.de/publikationen/ abschlussarbeiten/haemmerlingbachelor2014.pdf

  36. J. Frenkel, Wave mechanics. Advanced General Theory (Clarendon Press, Oxford, 1934)

  37. A.D. McLachlan, Mol. Phys. 8, 39 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Rau, J. Main, G. Wunner, Phys. Rev. A 82, 023610 (2010)

    Article  ADS  Google Scholar 

  39. M. Kreibich, J. Main, G. Wunner, Phys. Rev. A 86, 013608 (2012)

    Article  ADS  Google Scholar 

  40. M. Kreibich, J. Main, G. Wunner, J. Phys. B 46, 045302 (2013)

    Article  ADS  Google Scholar 

  41. H. Cartarius, T. Fabčič, J. Main, G. Wunner, Phys. Rev. A 78, 013615 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Junginger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junginger, A., Schaller, T., Hämmerling, G. et al. Normal form expansions and thermal decay rates of Bose-Einstein condensates with short- and long-range interaction. Eur. Phys. J. D 69, 83 (2015). https://doi.org/10.1140/epjd/e2015-50883-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50883-3

Keywords

Navigation