Skip to main content
Log in

Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Influence of kinetic effects on 3-wave interaction was examined within the frame of stimulated Raman backward scattering (SRBS) in a rarefied laser corona. The plasma is supposed to be weakly collisional with a negligible density gradient. The model is centred on the physical situation of shock ignition at a large scale direct drive compression experiments. The modelling uses a 1D geometry in a Maxwell-Vlasov model. The method used is a truncated Fourier-Hermite expansion numerically stabilized by a model collisional term with a realistic value of the collision frequency. In parallel, besides the linear theory of SRBS, a coupled mode 3-wave equation system (laser driving wave, Raman back-scattered wave and the daughter forward scattered plasma wave) is solved to demonstrate the correspondence between the full kinetic model and 3-wave interaction with no electron kinetics involved to identify the differences between both the solutions arising due to the electron kinetic effects. We concentrated mainly on the Raman reflectivity, which is one of the important parameters controlling the efficiency of the shock ignition scheme. It was found that the onset of the kinetic effects has a distinct intensity threshold, above which the Raman reflectivity may go down due to the electron kinetics. In addition, we were trying to identify the most important features of the electron phase space behaviour, such as particle trapping in potential minima of the generated plasma wave and its consequences for the 3-wave interaction. The role of the trapped electrons seems to be crucial for a deformation of the plasma wave dispersion curve, as indicated in some earlier work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindel, Phys. Plasmas 2, 3933 (1995)

    Article  ADS  Google Scholar 

  2. R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Phys. Rev. Lett. 98, 155001 (2007)

    Article  ADS  Google Scholar 

  3. P. Bertrand, A. Ghizzo, S.J. Kartunen, T.J.H. Pattikangas, R.R.E. Salomaa, M. Shoucri, Phys. Plasmas 2, 3115 (1995)

    Article  ADS  Google Scholar 

  4. W. Feng, X. Li, C.Y. Zheng, Plasma Sci. Technol. 15, 721 (2013)

    Article  ADS  Google Scholar 

  5. L. Hao, Z.J. Liu, X.Y. Hu, C.Y. Zheng, Laser Part. Beams 31, 203 (2013)

    Article  ADS  Google Scholar 

  6. D. Bénisti, O. Morice, L. Gremillet, A. Friou, E. Lefebvre, EPJ Web of Conferences 59, 05011 (2013)

    Article  Google Scholar 

  7. A. Ghizzo, T. Réveillé, P. Bertrand, T.W. Johnston, J. Lebas, M.M. Shoucri, J. Comput. Phys. 118, 356 (1995)

    Article  ADS  MATH  Google Scholar 

  8. A. Ghizzo, M. Albrecht-Marc, T. Réveillé, P. Bertrand, D.D. Sarto, T.W. Johnston, Commun. Nonlin. Sci. Numer. Simul. 13, 72 (2008)

    Article  MATH  Google Scholar 

  9. H.X. Vu, D.F. DuBois, B. Bezzerides, Phys. Plasmas 9, 1745 (2002)

    Article  ADS  Google Scholar 

  10. H.X. Vu, D.F. DuBois, B. Bezzerides, Phys. Plasmas 14, 012702 (2007)

    Article  ADS  Google Scholar 

  11. O. Klimo, S. Weber, V.T. Tikhonchuk, J. Limpouch, Plasma Phys. Contr. Fusion 52, 055013 (2010)

    Article  ADS  Google Scholar 

  12. O. Klimo, V.T. Tikhonchuk, Plasma Phys. Contr. Fusion 55, 095002 (2013)

    Article  ADS  Google Scholar 

  13. C. Riconda, S. Weber, V.T. Tikhonchuk, A. Héron, Phys. Plasmas 18, 092701 (2011)

    Article  ADS  Google Scholar 

  14. S. Brunner, E.J. Valeo, Phys. Rev. Lett. 93, 145003 (2004)

    Article  ADS  Google Scholar 

  15. Z.J. Liu, S. Ping Zhu, L.H. Cao, C.Y. Zheng, X.T. He, Y. Wang, Phys. Plasmas 16, 112703 (2009)

    Article  ADS  Google Scholar 

  16. A. Salcedo, R.J. Focia, A.K. Ram, A. Bers, Nucl. Fusion 43, 1759 (2003)

    Article  ADS  Google Scholar 

  17. M. Mašek, K. Rohlena, Eur. Phys. J. D 56, 79 (2010)

    Article  ADS  Google Scholar 

  18. T.P. Armstrong, Phys. Fluids 10, 1269 (1967)

    Article  ADS  Google Scholar 

  19. T.P. Armstrong, R.C. Harding, G. Knorr, D. Montgomery, Methods in Computational Physics (Academic Press, 1970), Vol. 9

  20. D. Batani et al., Phys. Plasmas 21, 032710 (2014)

    Article  ADS  Google Scholar 

  21. T. Pisarczyk et al., Phys. Plasmas 21, 012708 (2014)

    Article  ADS  Google Scholar 

  22. P. Koester et al., Plasma Phys. Control. Fusion 55, 124045 (2013)

    Article  ADS  Google Scholar 

  23. P. Bertrand, Vlasov code applications, in Proceedings of the 49th Annual Meeting, 26-31 March 2005 (ISSS 2005)

  24. F. Filbet, E. Sonnendruecker, Comput. Phys. Commun. 150, 247 (2003)

    Article  ADS  MATH  Google Scholar 

  25. C. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)

    Article  ADS  Google Scholar 

  26. A. Ghizzo, P. Bertrand, M.M. Shoucri, T.W. Johnston, E. Fijalkow, M.R. Feix, J. Comput. Phys. 90, 431 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. P. Bertrand, A. Ghizzo, T.W. Johnston, M. Shoucri, E. Fijalkow, M.R. Feix, Phys. Fluids B 2, 1028 (1990)

    Article  ADS  Google Scholar 

  28. T.W. Johnston, P. Bertrand, A. Ghizzo, M. Shoucri, E. Fijalkow, M.R. Feix, Phys. Fluids B 4, 2523 (1992)

    Article  ADS  Google Scholar 

  29. E. Fijalkow, Comput. Phys. Commun. 116, 319 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. F. Filbet, E. Sonnendruecker, P. Betrrand, J. Comput. Phys. 172, 166 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. G. Knorr, Z. Naturforsch. 18a, 1304 (1963)

    ADS  MathSciNet  Google Scholar 

  32. F.C. Grant, M.R. Feix, Phys. Fluids 10, 696 (1967)

    Article  ADS  Google Scholar 

  33. S. Eliezer, The Interaction of High-Power Lasers with Plasmas (IOP Publishing, 2002)

  34. M.M. Shoucri, R.R.J. Gagné, J. Comput. Phys. 21, 238 (1976)

    Article  ADS  Google Scholar 

  35. G. Joyce, G. Knorr, H.K. Meier, J. Comput. Phys. 8, 53 (1971)

    Article  ADS  MATH  Google Scholar 

  36. M. Mašek, K. Rohlena, Commun. Nonlin. Sci. Numer. Simul. 13, 125 (2008)

    Article  MATH  Google Scholar 

  37. M. Mašek, K. Rohlena, Czech. J. Phys. 55, 973 (2005)

    Article  ADS  Google Scholar 

  38. W.L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City CA, 1988)

  39. D.W. Forslund, J.M. Kindel, E.L. Lindman, Phys. Fluids 18, 1002 (1975)

    Article  ADS  Google Scholar 

  40. J.F. Drake, P.K. Kaw, Y.C. Lee, G. Schmidt, C.S. Liu, M.N. Rosenbluth, Phys. Fluids 17, 778 (1974)

    Article  ADS  Google Scholar 

  41. S.J. Karttunen, Laser Part. Beams 3, 157 (1985)

    Article  ADS  Google Scholar 

  42. W. Theobald et al., Phys. Plasmas 19, 102706 (2012)

    Article  ADS  Google Scholar 

  43. V.B. Krapchev, A.K. Ram, Phys. Rev. A 22, 1229 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mašek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mašek, M., Rohlena, K. Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas. Eur. Phys. J. D 69, 109 (2015). https://doi.org/10.1140/epjd/e2015-50853-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50853-9

Keywords

Navigation