Skip to main content
Log in

Logarithmic decays of unstable states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It is known that the survival amplitude of unstable quantum states deviates from exponential relaxations and exhibits decays that depend on the integral and analytic properties of the energy distribution density. In the same scenario, model independent dominant logarithmic decays t −1−α0log t of the survival amplitude are induced over long times by special conditions on the energy distribution density. While the instantaneous decay rate exhibits the dominant long time relaxation 1 /t, the instantaneous energy tends to the minimum value of the energy spectrum with the dominant logarithmic decay 1/(tlog 2 t) over long times. Similar logarithmic relaxations have already been found in the dynamics of short range potential systems with even dimensional space or in the Weisskopf-Wigner model of spontaneous emission from a two-level atom. Here, logarithmic decays are obtained as a pure model independent quantum effect in general unstable states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978)

    Article  ADS  Google Scholar 

  2. S. Krylov, V.A. Fock, Zh. Eksp. Teor. Fiz. 17, 93 (1947)

    Google Scholar 

  3. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover Publ. Inc., 1999)

  4. L.A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1957)

    Google Scholar 

  5. L.A. Khalfin, Sov. Phys. JETP 6, 1053 (1958)

    ADS  MATH  Google Scholar 

  6. R.E.A.C. Paley, N. Wiener, Fourier Transforms in the Complex Domain (American Mathematical Society, New York, 1934)

  7. C. Rothe, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 96, 163601 (2006)

    Article  ADS  Google Scholar 

  8. A. Peres, Ann. Phys. 129, 33 (1980)

    Article  ADS  Google Scholar 

  9. T. Jittoh, S. Matsumoto, J. Sato, Y. Sato, K. Takeda, Phys. Rev. A 71, 012109 (2005)

    Article  ADS  Google Scholar 

  10. D.S. Onley, A. Kumar, Am. J. Phys. 60, 432 (1992)

    Article  ADS  Google Scholar 

  11. K. Urbanowski, Eur. Phys. J. D 54, 25 (2009)

    Article  ADS  Google Scholar 

  12. F.W.J. Olver, Asymoptotic and Special Functions (Academic Press, New York, 1974)

  13. A. Erdelyi, Asymptotic Expansions (Dover Publ. Inc., New York, 1956)

  14. E.T. Copson, Asymptotic Expansions (Cambridge University Press, 1965)

  15. K. Urbanowski, Cent. Eur. J. Phys. 7, 696 (2009)

    Article  Google Scholar 

  16. K. Urbanowski, Eur. Phys. J. C 58, 151 (2008)

    Article  ADS  Google Scholar 

  17. P.J. Aston, Europhys. Lett. 97 52001 (2012)

    Article  ADS  Google Scholar 

  18. P.J. Aston, Europhys. Lett. 101 42002 (2013)

    Article  ADS  Google Scholar 

  19. C. Roth, S.I. Hintschich, A.P. Monkman, Phys. Rev. Lett. 71, 163601 (2006)

    Article  ADS  Google Scholar 

  20. P. Facchi, S. Pascazio, Physica A 271, 133 (1999)

    Article  ADS  Google Scholar 

  21. E. Torrontegui, J.G. Muga, J. Martorell, D.W.L. Sprung, Phys. Rev. A 80, 012703 (2009)

    Article  ADS  Google Scholar 

  22. M. Nowakowski, N.G. Kelkar, AIP Conf. Proc. 1030, 250 (2008)

    Article  ADS  Google Scholar 

  23. I. Joichi, Sh. Matsumoto, M. Yoshimura, Phys. Rev. D 58, 045004 (1998)

    Article  ADS  Google Scholar 

  24. H. Nakazato, M. Namiki, S. Pascazio, Int. J. Mod. Phys. B 10, 247 (1996)

    Article  ADS  Google Scholar 

  25. S.R. Wilkinson et al., Nature 387, 575 (1997)

    Article  ADS  Google Scholar 

  26. P.T. Greenland, Nature 355, 298 (1988)

    Article  ADS  Google Scholar 

  27. F. Giacosa, Found. Phys. 42, 1262 (2012)

    Article  ADS  MATH  Google Scholar 

  28. L.M. Krauss, J. Dent, Phys. Rev. Lett. 100, 171301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  29. K. Urbanowski, Phys. Rev. Lett. 107, 209001 (2011)

    Article  ADS  Google Scholar 

  30. N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, Phys. Rev. C 70, 024601 (2004)

    Article  ADS  Google Scholar 

  31. E.B. Norman, S.B. Gazes, S.G. Crane, D.A. Bennett, Phys. Rev. Lett. 60, 2246 (1988)

    Article  ADS  Google Scholar 

  32. K.O. Friedrichs, Commun. Pure Appl. Math. 1, 361 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Gadella, G. Pronko, arXiv:1106.5782v1 (2011) and references therein

  34. M. Miyamoto, J. Math. Phys. 47, 082103 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Miyamoto, Open Syst. Inf. Dyn. 13, 291 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Jensen, T. Kato, Duke Math. J. 46, 583 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  37. V.F. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930)

    Article  ADS  MATH  Google Scholar 

  38. E. Merzbacher, Quantum Mechanics, 2nd edn. (Wiley, New York, 1970)

  39. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)

  40. L. Davidovich, Ph. D. thesis, University of Rochester, 1976

  41. P.L. Knight, P.W. Milonni, Phys. Lett. A 56, 275 (1976)

    Article  ADS  Google Scholar 

  42. K. Wodkiewicz, J.H. Eberly, Ann. Phys. 101, 574 (1976)

    Article  ADS  Google Scholar 

  43. J. Seke, W.N. Herfort, Phys. Rev. A 38, 833 (1988) and references therein

    Article  ADS  Google Scholar 

  44. M. Murata, J. Funct. Anal. 49, 10 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  45. M.L. Goldberger, Collision Theory (Willey, New York, 1964)

  46. J. Mostowski, K. Wodkiewicz, Bul. Acad. Polon. Sci. 21, 1027 (1973)

    Google Scholar 

  47. D.G. Arbo, M.A. Castagnino, F.H. Gaioli, S. Iguri, Physica A227, 469 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Nowakowski, N.G. Kelkar, AIP Conf. Proc. 1030, 250 (2008)

    Article  ADS  Google Scholar 

  49. K. Urbanowski, J. Piskorski, J. Nucl. Part. Phys. 2, 71 (2012)

    Article  Google Scholar 

  50. K.M. Sluis, E.A. Gislason, Phys. Rev. A 43, 4581 (1991)

    Article  ADS  Google Scholar 

  51. R.E. Parrot, J. Lawrence, Europhys. Lett. 57, 632 (2002)

    Article  ADS  Google Scholar 

  52. J. Lawrence, J. Opt. B 4, S446 (2002)

    Article  ADS  Google Scholar 

  53. R. Santra, J.M. Shainline, C.H. Greene, Phys. Rev. A 71, 032703 (2005)

    Article  ADS  Google Scholar 

  54. N.M. Temme, Special Functions An Introduction to the Classical Functions of Mathematical Physics (John Wiley & Sons, 1996)

  55. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, in Integrals and Series (Gordon and Breach Science Publishers, Amsterdam, 1986), Vols. 1–5

  56. E.C. Titchmarsh, The Theory of functions, 2nd edn. (Oxford University Press, 1997)

  57. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edn. (New York, Chelsea Pub. Co., 1986)

  58. A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, in Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vols. 1, 2

  59. F. Mainardi, Fractional Calcolus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)

  60. K. Urbanowski, Phys. Rev. A 50, 2847 (1994)

    Article  ADS  Google Scholar 

  61. K. Urbanowski, Open Syst. Inf. Dyn. 20, 1340008 (2013)

    Article  MathSciNet  Google Scholar 

  62. K. Urbanowski, J. Skorek, Int. J. Mod. Phys. 8, 4355 (1993)

    Article  ADS  Google Scholar 

  63. L.P. Horwitz, J.P. Marchand, Helv. Phys. Acta 42, 801 (1969)

    MathSciNet  Google Scholar 

  64. D.V. Widder, The Laplace Transform (Princeton University Press, Princeton, 1941)

  65. R. Wong, Asymptotic Approximations of Integrals (Academic Press, Boston, 1989)

  66. R. Wong, Y.-Q. Zhao, Proc. R. Soc. London A 458, 625 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  67. F. Giraldi, F. Petruccione, J. Phys. A 46, 015304 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  68. F. Giraldi, F. Petruccione, J. Phys. A 45, 285306 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giraldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giraldi, F. Logarithmic decays of unstable states. Eur. Phys. J. D 69, 5 (2015). https://doi.org/10.1140/epjd/e2014-40756-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40756-8

Keywords

Navigation