Skip to main content
Log in

Entanglement production in scattering of Gaussian wave packets from fixed localized impurities

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Generation of quantum entanglement in scattering of particles from fixed localized spin impurities is investigated. In the suggested approach, the incident particle is described by a Gaussian wave packet with an initial definite width. It is also assumed that the incident particle interacts with the impurities through the Ising and/or Heisenberg interactions. It is shown that the created entanglement is strongly affected by the initial width of the incident wave packet. For an initially well localized wave packet the created entanglement is low. However, as the initial width increases the entanglement grows appreciably and for sufficiently large values of the initial width the present results tend to our previous results for scattering of plane waves from spin impurities. For scattering from a double spin impurity, it is shown that the periodic behavior of the previous results changes significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  3. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, Oxford, 2000)

  4. S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)

  5. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2002)

    Article  ADS  Google Scholar 

  6. J. Audretsch, Entangled Systems (Wiley-VCH, Weinheim, 2007)

  7. V. Vedral, Introduction to Quantum Information Science (Oxford University Press, New York, 2006)

  8. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  9. C.H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, W.K. Wooters, Phys. Rev. A 60, 1888 (1999)

    Article  MathSciNet  Google Scholar 

  10. L. Memarzadeh, S. Mancini, Phys. Rev. A 86, 062316 (2012)

    Article  ADS  Google Scholar 

  11. L. Memarzadeh, S. Mancini, Phys. Rev. A 87, 032303 (2013)

    Article  ADS  Google Scholar 

  12. S. Pegahan, M. Soltani, F. Kheirandish, Int. J. Theor. Phys. 52, 4403 (2013)

    Article  MATH  Google Scholar 

  13. R. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  14. R. Tanas, Z. Ficek, J. Opt. B 6, S610 (2004)

    Article  ADS  Google Scholar 

  15. P. Domokos, J.M. Raimond, M. Brune, S. Haroche, Phys. Rev. A 52, 3554 (1995)

    Article  ADS  Google Scholar 

  16. A. Bayat, S. Bose, Phys. Rev. A 81, 012304 (2010)

    Article  ADS  Google Scholar 

  17. A. Bayat, S. Bose, Adv. Math. Phys. 2010, 127182 (2010)

    Article  MathSciNet  Google Scholar 

  18. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  19. M. Rafiee, M. Soltani, H. Mohammadi, H. Mokhtari, Eur. Phys. J. D 63, 473 (2011)

    Article  ADS  Google Scholar 

  20. K. Mishima, M. Hayashi, S.H. Lin, Phys. Lett. A 333, 371 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. D. Yang, S. Gu, H. Li, J. Phys. A 40, 14871 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. K. Yuasa, H. Nakazato, J. Phys. A 40, 297 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. G. Cordourier-Maruri, F. Ciccarello, Y. Omar, M. Zarcone, R. de Coss, S. Bose, Phys. Rev. A 82, 052313 (2010)

    Article  ADS  Google Scholar 

  24. R. Weder, Phys. Rev. A 84, 062320 (2011)

    Article  ADS  Google Scholar 

  25. D. Home, A.S. Majumdar, A. Matzkin, J. Phys. A 45, 295301 (2012)

    Article  Google Scholar 

  26. M.G. Benedict, J. Kovacs, A. Czirjak, J. Phys. A 45, 085304 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. N.L. Harshman, P. Singh, J. Phys. A 41, 155304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. N.L. Harshman, G. Hutton, Phys. Rev. A 77, 042310 (2008)

    Article  ADS  Google Scholar 

  29. K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 68, 022110 (2003)

    Article  ADS  Google Scholar 

  30. M.V. Fedorov, M.A. Efremov, A.E. Kazakov, K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 69, 052117 (2004)

    Article  ADS  Google Scholar 

  31. J. Wang, C.K. Law, M.C. Chu, Phys. Rev. A 73, 034302 (2006)

    Article  ADS  Google Scholar 

  32. J.Q. Liao, C.K. Law, Phys. Rev. A 78, 043809 (2013)

    Article  ADS  Google Scholar 

  33. Y. Hida, H. Nakazato, K. Yuasa, Y. Omar, Phys. Rev. A 80, 012310 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Ghanbari-Adivi, M. Soltani, H. Ebtekarnasab, Eur. Phys. J. D 67, 118 (2013)

    Article  ADS  Google Scholar 

  35. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, 1992)

  36. M.A. Andreata, V.V. Dodonov, J. Phys. A 37, 2423 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. T. Cox, J. Lekner, Eur. J. Phys. 29, 671 (2008)

    Article  MATH  Google Scholar 

  38. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. M. Schlosshauer, Decoherence and the quantum-to-classical transition (Springer-Verlag, Berlin, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari-Adivi, E., Soltani, M. & Ebtekarnasab, H. Entanglement production in scattering of Gaussian wave packets from fixed localized impurities. Eur. Phys. J. D 68, 103 (2014). https://doi.org/10.1140/epjd/e2014-40733-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40733-3

Keywords

Navigation