Skip to main content
Log in

Two-dimensional defect solitons in parity-time-symmetric periodic optical lattices

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report on the existence and stability of two-dimensional (2D) fundamental defect solitons (DSs) in parity-time (PT) symmetric periodic optical lattices based on focusing and defocusing nonlinear media, respectively. The stable regions of DSs in focusing and defocusing nonlinear media are calculated for the point defect. With the introduction of gain and loss component, some unique properties of 2D spatial DSs are displayed in such lattice potential. There exists transverse power-flow in the PT symmetric periodic optical lattice, and the DSs in the high power regions are unstable. Some properties in focusing nonlinear media are very different from those in defocusing nonlinear media. DSs in PT symmetric lattices with line defect based on focusing nonlinearity are studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Musslimani, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  2. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  3. F.K. Abdullaev, Y.V. Kartashov, V.V. Konotop, D.A. Zezyulin, Phys. Rev. A 83, 041805 (2011)

    Article  ADS  Google Scholar 

  4. S.V. Dmitriev, A.A. Sukhorukov, Y.S. Kivshar, Opt. Lett. 35, 2976 (2010)

    Article  ADS  Google Scholar 

  5. R. Driben, B.A. Malomed, Opt. Lett. 36, 4323 (2011)

    Article  ADS  Google Scholar 

  6. H. Li, Z. Shi, X. Jiang, X. Zhu, Opt. Lett. 36, 3290 (2011)

    Article  ADS  Google Scholar 

  7. X. Zhu, H. Wang, L.X. Zheng, H. Li, Y.J. He, Opt. Lett. 36, 2680 (2011)

    Article  ADS  Google Scholar 

  8. Y. He, X. Zhu, D. Mihalache, J. Liu, Z. Chen, Phys. Rev. A 85, 013831 (2012)

    Article  ADS  Google Scholar 

  9. M.A. Miri, A.B. Aceves, T. Kottos, V. Kovanis, D.N. Christodoulides, Phys. Rev. A 86, 033801 (2012)

    Article  ADS  Google Scholar 

  10. A.A. Sukhorukov, S.V. Dmitriev, S.V. Suchkov, Y.S. Kivshar, Opt. Lett. 37, 2148 (2012)

    Article  ADS  Google Scholar 

  11. J. Zeng, Y. Lan, Phys. Rev. E 85, 047601 (2012)

    Article  ADS  Google Scholar 

  12. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. A 81, 063807 (2010)

    Article  ADS  Google Scholar 

  13. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. A. Ruschhaupt, F. Delgado, J.G. Muga, J. Phys. A 38, L171 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. A. Regensburger, C. Bersch, M.A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Nature 488, 167 (2012)

    Article  ADS  Google Scholar 

  16. A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, D. Christodoulides, Phys. Rev. Lett. 103, 93902 (2009)

    Article  ADS  Google Scholar 

  17. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  18. V. Achilleos, P. Kevrekidis, D. Frantzeskakis, R. Carretero-González, Phys. Rev. A 86, 013808 (2012)

    Article  ADS  Google Scholar 

  19. S. Nixon, L. Ge, J. Yang, Phys. Rev. A 85, 023822 (2012)

    Article  ADS  Google Scholar 

  20. Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, H. Zhang, Phys. Rev. A 80, 043824 (2009)

    Article  ADS  Google Scholar 

  21. H. Wang, J. Wang, Opt. Exp. 19, 4030 (2011)

    Article  ADS  Google Scholar 

  22. Z. Lu, Z.-M. Zhang, Opt. Exp. 19, 11457 (2011)

    Article  ADS  Google Scholar 

  23. S. Hu, X. Ma, D. Lu, Y. Zheng, W. Hu, Phys. Rev. A 85, 043826 (2012)

    Article  ADS  Google Scholar 

  24. N. Dror, B.A. Malomed, Phys. Rev. E 87, 063203 (2013)

    Article  ADS  Google Scholar 

  25. Y. He, D. Mihalache, X. Zhu, L. Guo, Y.V. Kartashov, Opt. Lett. 37, 2526 (2012)

    Article  Google Scholar 

  26. H. Wang, W. He, X. Zhu, Y. He, Romanian Rep. Phys. 64, 1391 (2012)

    Google Scholar 

  27. Z. Lu, Z.M. Zhang, Opt. Exp. 19, 2410 (2011)

    Article  ADS  Google Scholar 

  28. P.V. Braun, S.A. Rinne, F. Garcia-Santamaria, Adv. Mater. 18, 2665 (2006)

    Article  Google Scholar 

  29. C.M. Bender, G.V. Dunne, P.N. Meisinger, Phys. Lett. A 252, 272 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. J. Yang, T.I. Lakoba, Studies Appl. Math. 118, 153 (2007)

    Article  MathSciNet  Google Scholar 

  31. J. Yang, J. Comput. Phys. 227, 6862 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. J. Yang, Nonlinear waves in integrable and nonintegrable systems (Society for Industrial Mathematics, 2010)

  33. J. Yang, Z. Chen, Phys. Rev. E 73, 026609 (2006)

    Article  ADS  Google Scholar 

  34. J. Zeng, B.A. Malomed, J. Opt. Soc. Am. B 30, 1786 (2013)

    Article  ADS  Google Scholar 

  35. H. Sakaguchi, B.A. Malomed, Phys. Rev. A 81, 013624 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shi, S., He, W. et al. Two-dimensional defect solitons in parity-time-symmetric periodic optical lattices. Eur. Phys. J. D 68, 322 (2014). https://doi.org/10.1140/epjd/e2014-40513-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40513-1

Keywords

Navigation