Skip to main content
Log in

On the origin of atomistic mechanism of rapid diffusion in alkali halide nanoclusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

To elucidate the atomistic diffusion mechanism responsible for the rapid diffusion in alkali halide nano particles, called Spontaneous Mixing, we execute molecular dynamics simulations with empirical models for KCl-KBr, NaCl-NaBr, RbCl-RbBr and KBr-KI. We successfully reproduce essential features of the rapid diffusion phenomenon. It is numerically confirmed that the rate of the diffusion clearly depends on the size and temperature of the clusters, which is consistent with experiments. A quite conspicuous feature is that the surface melting and collective motions of ions are inhibited in alkali halide clusters. This result indicates that the Surface Peeling Mechanism, which is responsible for the spontaneous alloying of binary metals, does not play a dominant role for the spontaneous mixing in alkali halide nanoclusters. Detailed analysis of atomic motion inside the clusters reveals that the Vacancy Mechanism is the most important mechanism for the rapid diffusion in alkali halide clusters. This is also confirmed by evaluation of the vacancy formation energy: the formation energy notably decreases with the cluster size, which makes vacancy formation easier and diffusion more rapid in small alkali halide clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.L. Wolf, Nanophysics and Nanotechnology (Wiley-VCH, 2008)

  2. G.A. Ozin, A.C. Arsenault, L. Cademartiri, Nanochemistry: a chemical approach to nanomaterials (Royal Society of Chemistry, 2009)

  3. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16, 405 (1987)

    Article  Google Scholar 

  4. M. Haruta, Nature 437, 1098 (2005)

    Article  ADS  Google Scholar 

  5. H. Yasuda, H. Mori, Z. Phys. D 31, 131 (1994)

    Article  ADS  Google Scholar 

  6. H. Yasuda, H. Mori, M. Komatsu, K. Takeda, H. Fujita, J. Electron Microsc. 41, 267 (1992)

    Google Scholar 

  7. H. Yasuda, H. Mori, Phys. Rev. Lett. 69, 3747 (1992)

    Article  ADS  Google Scholar 

  8. Y. Kimura, Y. Saito, T. Nakada, C. Kaito, Phys. Low-Dim. Struct. 1/2, 1 (2000)

    Google Scholar 

  9. Y. Kimura, Y. Saito, T. Nakada, C. Kaito, Physica E 13, 11 (2002)

    Article  ADS  Google Scholar 

  10. Y. Shimizu, S. Sawada, K.S. Ikeda, Eur. Phys. J. D 4, 365 (1998)

    Article  ADS  Google Scholar 

  11. Y. Shimizu, K.S. Ikeda, S.I. Sawada, Phys. Rev. B 64, 075412 (2001)

    Article  ADS  Google Scholar 

  12. R. Garrigos, P. Cheyssac, R. Kofman, Z. Phys. D 12, 497 (1989)

    Article  ADS  Google Scholar 

  13. K.F. Peters, J.B. Cohen, Y.W. Chung, Phys. Rev. B 57, 13430 (1998)

    Article  ADS  Google Scholar 

  14. T.R. Kobayashi, K.S. Ikeda, Y. Shimizu, S. Sawada, Phys. Rev. B 66, 245412 (2002)

    Article  ADS  Google Scholar 

  15. T.R. Kobayashi, K.S. Ikeda, Y. Shimizu, S. Sawada, J. Chem. Phys. 118, 6552 (2003)

    Article  ADS  Google Scholar 

  16. S.I. Sawada, Y. Shimizu, K.S. Ikeda, Phys. Rev. B 67, 024204 (2003)

    Article  ADS  Google Scholar 

  17. F. Baletto, C. Mottet, R. Ferrando, Phys. Rev. Lett. 90, 135504 (2003)

    Article  ADS  Google Scholar 

  18. M. Born, J.E. Mayer, Z. Phys. A 75, 1 (1932)

    Article  Google Scholar 

  19. F.G. Fumi, M.P. Tosi, J. Phys. Chem. Solids 25, 31 (1964)

    Article  ADS  Google Scholar 

  20. M.P. Tosi, F.G. Fumi, J. Phys. Chem. Solids 25, 45 (1964)

    Article  ADS  Google Scholar 

  21. A. Aguado, J. Phys. Chem. B 105, 2761 (2001)

    Article  Google Scholar 

  22. J. Jellinek, T.L. Beck, R.S. Berry, J. Chem. Phys. 84, 2783 (1986)

    Article  ADS  Google Scholar 

  23. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)

  24. T. Niiyama, Y. Shimizu, T.R. Kobayashi, T. Okushima, K.S. Ikeda, Phys. Rev. E 79, 051101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Sugano, Y. Nishina, S. Ohnishi, Microclusters (Springer, 1987)

  26. P.G. Shewmon, Diffusion in Solids (McGraw-Hill, Inc., New York, 1963)

  27. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005)

  28. R. Kofman, P. Cheyssac, R. Garrigos, Y. Lereah, G. Deutscher, Physica A 157, 630 (1989)

    Article  ADS  Google Scholar 

  29. T. Zykova-Timan, D. Ceresoli, U. Tartaglino, E. Tosatti, Phys. Rev. Lett. 94, 176105 (2005)

    Article  ADS  Google Scholar 

  30. S. Pehkonen, M. Ahtee, O. Inkinen, J. Phys. D 5, 767 (1972)

    Article  ADS  Google Scholar 

  31. S. Pehkonen, J. Phys. D 6, 538 (1973)

    Article  ADS  Google Scholar 

  32. N. Laurance, Phys. Rev. 120, 57 (1960)

    Article  ADS  Google Scholar 

  33. H. Mizuno, M. Inoue, Phys. Rev. 120, 1226 (1960)

    Article  ADS  Google Scholar 

  34. M. Sinder, D. Fuks, J. Pelleg, Phys. Rev. B 50, 2775 (1994)

    Article  ADS  Google Scholar 

  35. W.H. Qi, M.P. Wang, Physica B 334, 432 (2003)

    Article  ADS  Google Scholar 

  36. M. Müller, K. Albe, Acta Mater. 55, 3237 (2007)

    Article  Google Scholar 

  37. T. Niiyama, S.I. Sawada, K.S. Ikeda, Y. Shimizu, Chem. Phys. Lett. 503, 252 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Niiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niiyama, T., Sawada, Si., Ikeda, K. et al. On the origin of atomistic mechanism of rapid diffusion in alkali halide nanoclusters. Eur. Phys. J. D 68, 78 (2014). https://doi.org/10.1140/epjd/e2014-40469-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40469-0

Keywords

Navigation