Skip to main content
Log in

Non-Markovian dynamics for an open two-level system without rotating wave approximation: indivisibility versus backflow of information

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

By use of the recently presented two measures, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and its reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relation between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  2. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  5. Y. Kubota, K. Nobusada, J. Phys. Soc. Jpn 78, 114603 (2009)

    Article  Google Scholar 

  6. Y.H. Ji, J.J. Hu, Chin. Phys. B 19, 060304 (2010)

    Article  ADS  Google Scholar 

  7. J. Shao, J. Chem. Phys. 120, 5053 (2004)

    Article  ADS  Google Scholar 

  8. A.W. Chin, A. Datta, F. Caruso, S.F. Huelga, M.B. Plenio, New J. Phys. 12, 065002 (2010)

    Article  ADS  Google Scholar 

  9. A.G. Dijkstra, Y. Tanimura, Phys. Rev. Lett. 104, 250401 (2010)

    Article  ADS  Google Scholar 

  10. B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  11. H.P. Breuer, E.M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. E.M. Laine, J. Piilo, H.P. Breuer, Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  13. Á. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. M.M. Wolf, J. Eisert, T.S. Cubitt, J.I. Cirac, Phys. Rev. Lett. 101, 150402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. A.R. Usha Devi, A.K. Rajagopal, Sudha, Phys. Rev. A 83, 022109 (2011)

    Article  ADS  Google Scholar 

  16. X.M. Lu, X.G. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  17. S.C. Hou, X.X. Yi, S.X. Yu, C.H. Oh, Phys. Rev. A 83, 062115 (2011)

    Article  ADS  Google Scholar 

  18. Z.Y. Xu, W.L. Yang, M. Feng, Phys. Rev. A 81, 044105 (2010)

    Article  ADS  Google Scholar 

  19. Z. He, J. Zou, L. Li, B. Shao, Phys. Rev. A 83, 012108 (2011)

    Article  ADS  Google Scholar 

  20. H.P. Breuer, B. Vacchini, Phys. Rev. Lett. 101, 140402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Shabani, D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  22. H.P. Breuer, B. Vacchini, Phys. Rev. E 79, 041147 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Haikka, S. Maniscalco, Phys. Rev. A 81, 052103 (2010)

    Article  ADS  Google Scholar 

  24. K.W. Chang, C.K. Law, Phys. Rev. A 81, 052105 (2010)

    Article  ADS  Google Scholar 

  25. H. Krovi, O. Oreshkov, M. Ryazanov, D.A. Lidar, Phys. Rev. A 76, 052117 (2007)

    Article  ADS  Google Scholar 

  26. D. Chruściński, A. Kossakowski, S. Pascazio, Phys. Rev. A 81, 032101 (2010)

    Article  ADS  Google Scholar 

  27. P. Haikka, J.D. Cresser, S. Maniscalco, Phys. Rev. A 83, 012112 (2011)

    Article  ADS  Google Scholar 

  28. J. Jing, T. Yu, Phys. Rev. Lett. 105, 240403 (2010)

    Article  ADS  Google Scholar 

  29. W. Koch, F. Grossmann, D.J. Tannor, Phys. Rev. Lett. 105, 230405 (2010)

    Article  ADS  Google Scholar 

  30. C. Wu, Y. Li, M. Zhu, H. Guo, Phys. Rev. A 83, 052116 (2011)

    Article  ADS  Google Scholar 

  31. J.S. Xu, C.F. Li, M. Gong, X.B. Zou, C.H. Shi, G. Chen, G.C. Guo, Phys. Rev. Lett. 104, 100502 (2010)

    Article  ADS  Google Scholar 

  32. J.S. Xu, C.F. Li, C.J. Zhang, X.Y. Xu, Y.S. Zhang, G.C. Guo, Phys. Rev. A 82, 042328 (2010)

    Article  ADS  Google Scholar 

  33. B.H. Liu, L. Li, Y.F. Huang, C.F. Li, G.C. Guo, E.M. Laine, H.P. Breuer, J. Piilo, Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

  34. J.S. Tang, C.F. Li, Y.L. Li, X.B. Zou, G.C. Guo, H.P. Breuer, E.M. Laine, J. Piilo, Europhys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

  35. H.S. Zeng, N. Tang, Y.P. Zheng, G.Y. Wang, Phys. Rev. A 84, 032118 (2011)

    Article  ADS  Google Scholar 

  36. D. Chruściński, A. Kossakowski, Á. Rivas, Phys. Rev. A 83, 052128 (2011)

    Article  ADS  Google Scholar 

  37. L. Mazzola, E.M. Laine, H.P. Breuer, S. Maniscalco, J. Piilo, Phys. Rev. A 81, 062120 (2010)

    Article  ADS  Google Scholar 

  38. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (John Wiley & Sons, New York, 1989)

  39. S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, A. Messina, Phys. Rev. A 70, 032113 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, 2nd edn. (Springer, Berlin, Heidelberg, 2007)

  41. M.J.W. Hall, J. Phys. A 41, 205302 (2008)

    Article  MathSciNet  Google Scholar 

  42. M. Woldeyohannes, S. John, J. Opt. B: Quant. Semiclass. Opt. 5, R43 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.S. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Tang, N., Zheng, Y. et al. Non-Markovian dynamics for an open two-level system without rotating wave approximation: indivisibility versus backflow of information. Eur. Phys. J. D 66, 255 (2012). https://doi.org/10.1140/epjd/e2012-30354-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30354-3

Keywords

Navigation