Skip to main content
Log in

Stability competition between the layered and compact Cu16 clusters

The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Copper clusters experience a shape variation from layered to compact at the aggregation number of N = 16. Based on an extensive search for the structures of the low-lying neutral and charged isomers of Cu16 clusters, we address in this study the challenge in a structure search for clusters at shape-variation sizes, which arises from the structural diversity of the low-lying isomers. In order to reduce the bias on the structures with different shapes, a multi-step approach with a large number of candidates is applied to screen the structure pools which are necessarily larger than usual structure search of other sizes. In addition to the previously reported layered and compact structures, a third kind of structure, which can be recognized as a hybrid of layered and compact structures, is identified. Moreover, one of these hybrid structures is predicted to be most stable among the isomers. These hybrid structures not only bridge the structural and electronic properties of the distinct layered and compact structures, but also help understand the growth pattern of copper clusters. A set of new structures of anionic and cationic Cu16 isomers is also presented, starting from the newly established structure pool. The computed properties based on the identified neutral and ionic ground-state structures agree well with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. H. Häkkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 33401 (2002)

    Article  Google Scholar 

  2. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  3. M. Brack, Rev. Mod. Phys. 65, 677 (1993)

    Article  ADS  Google Scholar 

  4. D. Reinhard, B.D. Hall, P. Berthoud, S. Valkealahti, R. Monot, Phys. Rev. Lett. 79, 1459 (1997)

    Article  ADS  Google Scholar 

  5. O. Kostko, N. Morgner, M.A. Hoffmann, B.V. Issendorff, Eur. Phys. J. D 34, 133 (2005)

    Article  ADS  Google Scholar 

  6. K.J. Taylor, C.L. Pettiette-Hall, O. Cheshnovsky, E. Smalley, J. Chem. Phys. 96, 3319 (1992)

    Article  ADS  Google Scholar 

  7. C.-Y. Cha, G. Ganteför, W. Eberhardt, J. Chem. Phys. 99, 6308 (1993)

    Article  ADS  Google Scholar 

  8. V.A. Spasov, T.-H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000)

    Article  ADS  Google Scholar 

  9. S. Krückeberg, L. Schweikhard, J. Ziegler, G. Dietrich, K. Lützenkirchen, C. Walther, J. Chem. Phys. 114, 2955 (2001)

    Article  ADS  Google Scholar 

  10. J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6897 (1990)

    Google Scholar 

  11. C.L. Pettiette, S.H. Yang, M.J. Craycraft, J. Conceicao, R.T. Laaksonen, O. Cheshnovsky, R.E. Smalley, J. Chem. Phys. 88, 095377 (1988)

    Article  ADS  Google Scholar 

  12. O. Ingólfsson, U. Busolt, K. Sugawara, J. Chem. Phys. 112, 4613 (2000)

    Article  ADS  Google Scholar 

  13. M. Vogel, A. Herlert, L. Schweikhard, J. Am. Soc. Mass Spectrom. 14, 614 (2003)

    Article  Google Scholar 

  14. M.B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992)

    Article  ADS  Google Scholar 

  15. C. Vazquez-Vazquez, M. Banobre-Lopez, A. Mitra, M.A. Lopez-Quintela, J. Rivas, Langmuir 25, 8208 (2009)

    Article  Google Scholar 

  16. Y.D. Kim, Int. J. Mass Spectrom. 238, 17 (2004)

    Article  ADS  Google Scholar 

  17. S. Darby, T.V. Mortimer-Jones, R.L. Johnston, C. Roberts, J. Chem. Phys. 116, 1539 (2002)

    Article  ADS  Google Scholar 

  18. Ş. Erkoç, R. Shaltaf, Phys. Rev. A 60, 3053 (1999)

    Article  ADS  Google Scholar 

  19. M. Kabir, A. Mookerjee, A.K. Bhattacharya, Phys. Rev. A 69, 43203 (2004)

    Article  ADS  Google Scholar 

  20. M. Kabir, A. Mookerjee, A.K. Bhattacharya, Eur. Phys. J. D 31, 477 (2004)

    Article  ADS  Google Scholar 

  21. P. Calaminici, A.M. Köster, N. Russo, D.R. Salahub, J. Chem. Phys. 105, 9546 (1996)

    Article  ADS  Google Scholar 

  22. C. Massobrio, A. Pasquarello, A.D. Corso, J. Chem. Phys. 109, 6626 (1998)

    Article  ADS  Google Scholar 

  23. C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. B 54, 8913 (1996)

    Article  ADS  Google Scholar 

  24. K. Jug, B. Zimmermann, P. Calaminici, A.M. Köster, J. Chem. Phys. 116, 4497 (2002)

    Article  ADS  Google Scholar 

  25. P. Jaque, A. Toro-Labbé, J. Phys. Chem. B 108, 2568 (2004)

    Article  Google Scholar 

  26. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  27. E.M. Fernández, J.M. Soler, I.L. Garzón, L.C. Balbás, Int. J. Quantum Chem. 101, 740 (2005)

    Article  Google Scholar 

  28. S. Li, M.M.G. Alemany, J.R. Chelikowsky, Phys. Rev. B 71, 165433 (2005)

    Article  ADS  Google Scholar 

  29. G.H. Guvelioglu, P. Ma, X. He, R.C. Forrey, H. Cheng, Phys. Rev. Lett. 94, 26103 (2005)

    Article  ADS  Google Scholar 

  30. M. Itoh, V. Kumar, Y. Kawazoe, Int. J. Mod. Phys. B 19, 2421 (2005)

    Article  ADS  Google Scholar 

  31. M. Yang, K.A. Jackson, C. Koehler, T. Frauenheim, J. Jellinek, J. Chem. Phys. 124, 24308 (2006)

    Article  Google Scholar 

  32. S. Li, M.M.G. Alemany, J.R. Chelikowsky, J. Chem. Phys. 125, 034311 (2006)

    Article  ADS  Google Scholar 

  33. P. Calaminici, A.M. Köster, Z. Gómez-Sandoval, J. Chem. Theory Comput. 3, 905 (2007)

    Article  Google Scholar 

  34. B. Assadollahzadeh, P.R. Bunker, P. Schwerdtfeger, Chem. Phys. Lett. 451, 262 (2008)

    Article  ADS  Google Scholar 

  35. M. Itoh, V. Kumar, T. Adschiri, Y. Kawazoe, J. Chem. Phys. 131, 174510 (2009)

    Article  ADS  Google Scholar 

  36. N. Veldeman, T. Höltzl, S. Neukermans, T. Veszprémi, M.T. Nguyen, P. Lievens, Phys. Rev. A 76, 011201(R) (2007)

    Article  ADS  Google Scholar 

  37. Q. Zeng, X. Wang, M. Yang, H. Fu, Eur. Phys. J. D 58, 125 (2010)

    Article  ADS  Google Scholar 

  38. K. Baishya, J.C. Idrobo, S. Ogut, M. Yang, K.A. Jackson, J. Jellinek, Phys. Rev. B 83, 245402 (2011)

    Article  ADS  Google Scholar 

  39. X. Chu, M. Xiang, Q. Zeng, W. Zhu, M. Yang, J. Phys. B: At. Mol. Opt. Phys. 44, 205103 (2011)

    Article  ADS  Google Scholar 

  40. X. Yuan, L. Liu, X. Wang, M. Yang, K.A. Jackson, J. Jellinek, J. Phys. Chem. A 115, 8715 (2011)

    Google Scholar 

  41. M. Jiang, Q. Zeng, T. Zhang, M. Yang, K.A. Jackson, J. Chem. Phys. 136, 104501 (2012)

    Article  ADS  Google Scholar 

  42. K.A. Jackson, M. Horoi, T. Frauenheim, A.A. Shvartsburg, Comput. Mater. Sci. 35, 232 (2006)

    Article  Google Scholar 

  43. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  44. D.C. Liu, J. Nocedal, Math. Program. 45, 503 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. I. Rata, A.A. Shvartsburg, M. Horoi, T. Frauenheim, K.W.M. Siu, K.A. Jackson, Phys. Rev. Lett. 85, 546 (2000)

    Article  ADS  Google Scholar 

  46. P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, C. Köhler, G. Seifert, J. Chem. Phys. 116, 3576 (2002)

    Article  ADS  Google Scholar 

  47. K.A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, Phys. Rev. Lett. 93, 13401 (2004)

    Article  ADS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  49. D.V. Porezag, M.A. Pederson, Phys. Rev. B 54, 7830 (1996)

    Article  ADS  Google Scholar 

  50. M.R. Pederson, K.A. Jackson, Phys. Rev. B 41, 7453 (1990)

    Article  ADS  Google Scholar 

  51. K.A. Jackson, M.R. Pederson, Phys. Rev. B 42, 3267 (1990)

    ADS  Google Scholar 

  52. C. Kittel, Introduction to Solid State Physics (Wiley, NewYork, 1996)

  53. R.M. Olson, S. Varganov, M.S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S.A. Kucharski, M. Musial, J. Am. Chem. Soc. 127, 1049 (2005)

    Article  Google Scholar 

  54. M. Yang, K.A. Jackson, J. Jellinek, J. Chem. Phys. 125, 144308 (2006)

    Article  ADS  Google Scholar 

  55. R.L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, London, 2002)

  56. H.A. Kurtz, J.J.P. Steward, K.M. Dieter, J. Comput. Chem. 11, 82 (1990)

    Article  Google Scholar 

  57. A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M.L. Yang or K.A. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Yang, F., Zeng, Q. et al. Stability competition between the layered and compact Cu16 clusters. Eur. Phys. J. D 66, 209 (2012). https://doi.org/10.1140/epjd/e2012-30209-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30209-y

Keywords

Navigation