Skip to main content
Log in

Polarization wake of penetrating ions: oscillator model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2012

Abstract

The wake potential induced by a swift nonrelativistic ion has been studied theoretically for a random stopping medium consisting of quantal-harmonic-oscillator atoms. The primary purpose has been to study the influence of atomic binding on the frequently-studied wake potential in a Fermi gas. Quantitative comparisons at constant plasma frequency and increasing oscillator frequency show a gradual decrease in wavelength and a slight decrease in amplitude of the oscillatory part of the wake potential, as well as a systematic decrease in screening of the near-field next to the projectile. These findings can be expected on the basis of the Drude-Lorentz formula for the effective resonance frequency. We find a distinct dependence of the induced potential on the ion charge as long as the plasma frequency exceeds the oscillator frequency. In the opposite case of a dominating oscillator frequency we find little difference between the field induced by a point charge and that by a neutral atom. As an application area we briefly discuss the proximity effect in the energy loss of molecular ions. We find that the polarization wake modifies the proximity effect, in contrast to the frequently-expressed view that it causes the proximity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, Phys. Rev. 57, 485 (1940)

    Article  ADS  Google Scholar 

  2. N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 18, 1 (1948)

    Google Scholar 

  3. H.A. Kramers, Physica 13, 401 (1947)

    Article  ADS  Google Scholar 

  4. A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 24, 1 (1948)

    Google Scholar 

  5. J. Neufeld, R.H. Ritchie, Phys. Rev. 98, 1632 (1955)

    Article  ADS  MATH  Google Scholar 

  6. V.N. Neelavathi, R.H. Ritchie, W. Brandt, Phys. Rev. Lett. 33, 302 (1974)

    Article  ADS  Google Scholar 

  7. W. Brandt, R.H. Ritchie, Nucl. Instrum. Meth. 132, 43 (1976)

    Article  ADS  Google Scholar 

  8. Z. Vager, D.S. Gemmell, Phys. Rev. Lett. 37, 1352 (1976)

    Article  ADS  Google Scholar 

  9. D.S. Gemmell, Nucl. Instrum. Meth. 194, 255 (1982)

    Article  ADS  Google Scholar 

  10. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 28, 1 (1954)

    MathSciNet  Google Scholar 

  11. P.M. Echenique, R.H. Ritchie, W. Brandt, Phys. Rev. B 20, 2567 (1979)

    Article  ADS  Google Scholar 

  12. P.M. Echenique, F. Flores, R.H. Ritchie, Solid State Phys. 43, 229 (1990)

    Article  Google Scholar 

  13. I. Abril, R. Garcia-Molina, C. Denton, F.J. Pérez-Péres, N.R. Arista, Phys. Rev. A 58, 357 (1998)

    Article  ADS  Google Scholar 

  14. V.H. Ponce, F.J. Fuhr, J.D. Valdés, F.J.G. de Abajo, Nucl. Instrum. Meth. B 146, 11 (1998)

    Article  ADS  Google Scholar 

  15. I. Campillo, J.M. Pitarke, Nucl. Instrum. Meth. B 164, 161 (2000)

    Article  ADS  Google Scholar 

  16. H. Esbensen, P. Sigmund, Ann. Phys. 201, 152 (1990)

    Article  ADS  Google Scholar 

  17. A. Belkacem, P. Sigmund, Nucl. Instrum. Meth. B 48, 29 (1990)

    Article  ADS  Google Scholar 

  18. P. Sigmund, U. Haagerup, Phys. Rev. A 34, 892 (1986)

    Article  ADS  Google Scholar 

  19. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1964)

  20. J.D. Jackson, Classical electrodynamics (John Wiley & Sons, New York, 1975)

  21. W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982)

    Article  ADS  Google Scholar 

  22. P. Sigmund, Phys. Rev. A 56, 3781 (1997)

    Article  ADS  Google Scholar 

  23. P. Sigmund, A. Schinner, Nucl. Instrum. Meth. B 195, 64 (2002)

    Article  ADS  Google Scholar 

  24. N.R. Arista, Nucl. Instrum. Meth. B 164-165, 108 (2000)

    Article  ADS  Google Scholar 

  25. W. Brandt, A. Ratkowski, R.H. Ritchie, Phys. Rev. Lett. 33, 1325 (1974)

    Article  ADS  Google Scholar 

  26. S.M. Shubeita, P.L. Grande, J.F. Dias, R. Garcia-Molina, C.D. Denton, I. Abril, Phys. Rev. B 83, 245423 (2011)

    Article  ADS  Google Scholar 

  27. M.F. Steuer, D.S. Gemmell, E.P. Kanter, E.A. Johnson, B.J. Zabransky, Nucl. Instrum. Meth. 194, 277 (1982)

    Article  ADS  Google Scholar 

  28. J. Jensen, P. Sigmund, Phys. Rev. A 61, 032903 (2000)

    Article  ADS  Google Scholar 

  29. Z.L. Miskovic, W.K. Liu, F.O. Goodman, Y.N. Wang, Phys. Rev. A 64, 064901 (2001)

    Article  ADS  Google Scholar 

  30. S. Heredia-Avalos, R. Garcia-Molina, N.R. Arista, Europhys. Lett. 54, 729 (2001)

    Article  ADS  Google Scholar 

  31. N.R. Arista, Phys. Rev. B 18, 1 (1978)

    Article  ADS  Google Scholar 

  32. S.M. Shubeita, R.C. Fadanelli, J.F. Dias, P.L. Grande, C.D. Denton, I. Abril, R. Garcia-Molina, N.R. Arista, Phys. Rev. B 80, 205316 (2009)

    Article  ADS  Google Scholar 

  33. P. Sigmund, A. Schinner, Eur. Phys. J. D 61, 39 (2011)

    Article  ADS  Google Scholar 

  34. N. Bohr, Philos. Mag. 25, 10 (1913)

    Article  MATH  Google Scholar 

  35. J.C. Eckardt, G. Lantschner, N.R. Arista, R.A. Baragiola, J. Phys. C 11, L851 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schinner, A., Sigmund, P. Polarization wake of penetrating ions: oscillator model. Eur. Phys. J. D 66, 56 (2012). https://doi.org/10.1140/epjd/e2012-20761-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20761-9

Keywords

Navigation