Skip to main content
Log in

Quantum gates using electronic and nuclear spins of Yb+ in a magnetic field gradient

  • Quantum Information
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M.K. Vandersypen, I.L. Chuang, Rev. Mod. Phys. 76, 1037 (2004)

    Article  ADS  Google Scholar 

  2. M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007)

    Article  Google Scholar 

  3. J. Du, N. Xu, X. Peng, P. Wang, S. Wu, D. Lu, Phys. Rev. Lett. 104, 030502 (2010)

    Article  ADS  Google Scholar 

  4. X. Peng, J. Zhang, J. Du, D. Suter, Phys. Rev. Lett. 103, 140501 (2009)

    Article  ADS  Google Scholar 

  5. B.E. Kane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  6. W. Harneit, C. Meyer, A. Weidinger, D. Suter, J. Twamley, Phys. Stat. Sol. B 233, 453 (2002)

    Article  ADS  Google Scholar 

  7. D. Suter, K. Lim, Phys. Rev. A 65, 052309 (2002)

    Article  ADS  Google Scholar 

  8. J.J. Bollinger, D.J. Heinzen, W.H. Itano, S.L. Gilbert, D.J. Wineland, IEEE Trans. Instrum. Meas. 40, 126 (1991)

    Article  Google Scholar 

  9. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Science 320, 1326 (2008)

    Article  ADS  Google Scholar 

  10. V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 102, 057403 (2009)

    Article  ADS  Google Scholar 

  11. M. Feng, Y.Y. Xu, F. Zhou, D. Suter, Phys. Rev. A 79, 052331 (2009)

    Article  ADS  Google Scholar 

  12. For instance, R. Blatt, D. Wineland, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  13. J. Home, D. Hanneke, J. Jost, J. Amini, D. Leibfried, D. Wineland, Science, 325, 1227 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  15. A. Sørensen, K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  16. M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, C. Wunderlich, Phys. Rev. Lett. 102, 073004 (2009)

    Article  ADS  Google Scholar 

  17. F. Mintert, C. Wunderlich, Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  18. F. Mintert, C. Wunderlich, Phys. Rev. Lett. 91, 029902 (2003)

    Article  ADS  Google Scholar 

  19. D. Mc Hugh, J. Twamley, Phys. Rev. A 71, 012315 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Wunderlich, in Laser Physics at the Limit, edited by D.M.H. Figger, C. Zimmermann (Springer, Berlin, 2002), p. 26171

  21. C. Wunderlich, C. Balzer, Adv. At. Mol. Opt. Phys. 49, 293 (2003)

    Google Scholar 

  22. C. Ospelkaus, C.E. Langer, J.M. Amini, K.R. Brown, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 101, 090502 (2008)

    Article  ADS  Google Scholar 

  23. S.X. Wang, J. Labaziewicz, Y. Ge, R. Shewmon, I.L. Chuang, Appl. Phys. Lett. 94, 094103 (2009)

    Article  ADS  Google Scholar 

  24. R. Ozeri, W.M. Itano, R.B. Blakestad, J. Britton, J. Chiaverini, J.D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J.H. Wesenberg, D.J. Wineland, Phys. Rev. A 75, 042329 (2007)

    Article  ADS  Google Scholar 

  25. M. Loewen, C. Wunderlich, Verhandl. DPG, 39 (2004)

  26. C. Balzer, A. Braun, T. Hannemann, C. Paape, M. Ettler, W. Neuhauser, C. Wunderlich, Phys. Rev. A 73, 041407(R) (2006)

    Article  ADS  Google Scholar 

  27. D. Kielpinski, M. Cetina, J.A. Cox, F.X. Kärtner, Opt. Lett. 31, 757 (2006)

    Article  ADS  Google Scholar 

  28. T. Hannemann, D. Reiss, C. Balzer, W. Neuhauser, P.E. Toschek, C. Wunderlich, Phys. Rev. A 65, 050303 (2002)

    Article  ADS  Google Scholar 

  29. P. Maunz, D.L. Moehring, S. Olmschenk, K.C. Younge, D.N. Matsukevich, C. Monroe, Nature Phys. 3, 538 (2007)

    Article  ADS  Google Scholar 

  30. M. Cetina, A. Grier, J. Campbell, I. Chuang, V. Vuletic, Phys. Rev. A 76, 4 (2007)

    Article  Google Scholar 

  31. R. Huesmann, Ch. Balzer, Ph. Courteille, W. Neuhauser, P.E. Toschek, Phys. Rev. Lett. 82, 1611 (1999)

    Article  ADS  Google Scholar 

  32. M. Johanning, A. Braun, D. Eiteneuer, Ch. Paape, Ch. Balzer, W. Neuhauser, Ch. Wunderlich, arXiv:0712.0969v2 [physics.atom-ph] (2010)

  33. H. Wunderlich, C. Wunderlich, K. Singer, F. Schmidt-Kaler, Phys. Rev. A 79, 052324 (2009)

    Article  ADS  Google Scholar 

  34. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Google Scholar 

  35. J. Fortagh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  36. S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fernholz, J. Schmiedmayer, D. Mahalu, I. Bar-Joseph, Appl. Phys. Lett. 85, 2980 (2004)

    Article  ADS  Google Scholar 

  37. M.N. Wilson, Superconducting magnets (Clarendon Press, Oxford, 1983)

  38. J.M.D. Coey, T.R. Ní Mhíocháin, High Magnetic Fields (World Scientific Publishing, 2003), p. 35

  39. D.R. Lide, CRC Handbook of Chemistry and Physics, 88th edn. (CRC Press, 2008)

  40. J.M.D. Coey, T.R. Ní Mhíocháin, High Magnetic Fields, in Permanent Magnets (World Scientific Publishing, 2003)

  41. K. Halbach, Nucl. Instrum. Methods 169, 1 (1980)

    Article  ADS  Google Scholar 

  42. H.A. Leupold, Rare-earth Iron Permanent Magnets (Oxford University Press, 1996), p. 380

  43. O. Cugat, F. Bloch, IEEE Trans. Magn. 34, 2465 (1998)

    Article  ADS  Google Scholar 

  44. M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, K. Hiraga, IEEE Trans. Magn. 20, 1584 (1984)

    Article  ADS  Google Scholar 

  45. T. Tanaka, T. Hara, T. Bizen, T. Seike, R. Tsuru, X. Marechal, H. Hirano, M. Morita, H. Teshima, S. Nariki, N. Sakai, I. Hirabayashi, M. Murakami, H. Kitamura, New J. Phys. 8, 16 (2006)

    Article  Google Scholar 

  46. P.K. Ghosh.Ion Traps (Clarendon Press, Oxford, 1995)

  47. F.G. Major, V.N. Gheorghe, G. Werth,Charged Particle Traps (Springer, Berlin, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K.L., Johanning, M., Feng, M. et al. Quantum gates using electronic and nuclear spins of Yb+ in a magnetic field gradient. Eur. Phys. J. D 63, 157–164 (2011). https://doi.org/10.1140/epjd/e2011-20108-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20108-2

Keywords

Navigation