Skip to main content
Log in

Complex transitions to synchronization in delay-coupled networks of logistic maps

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

A network of delay-coupled logistic maps exhibits two different synchronization regimes, depending on the distribution of the coupling delay times. When the delays are homogeneous throughout the network, the network synchronizes to a time-dependent state [F.M. Atay, J. Jost, A. Wende, Phys. Rev. Lett. 92, 144101 (2004)], which may be periodic or chaotic depending on the delay; when the delays are sufficiently heterogeneous, the synchronization proceeds to a steady-state, which is unstable for the uncoupled map [C. Masoller, A.C. Marti, Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the transition from time-dependent to steady-state synchronization as the width of the delay distribution increases. We also compare the two transitions to synchronization as the coupling strength increases. We use transition probabilities calculated via symbolic analysis and ordinal patterns. We find that, as the coupling strength increases, before the onset of steady-state synchronization the network splits into two clusters which are in anti-phase relation with each other. On the other hand, with increasing delay heterogeneity, no cluster formation is seen at the onset of steady-state synchronization; however, a rather complex unsynchronized state is detected, revealed by a diversity of transition probabilities in the network nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, NJ, 1988)

  2. S.H. Strogatz, D.M. Abrams, A. McRobie, B. Eckhardt, E. Ott, Nature 438, 43 (2005)

    Article  ADS  Google Scholar 

  3. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.A. Acebron, L.L. Bonilla, C.J. Perez Vicente, F. Ritort, R. Spingleri, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  5. Theory and Applications of Coupled Map Lattices, edited by K. Kaneko (Wiley, New York, 1993)

  6. R.E. Amritkar, S. Jalan, Physica A 321, 220 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. P. Li, M.Y. Chen, Y. Wu, J. Kurths, Phys. Rev. E 79, 067102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.M. Batista, S.E.D. Pinto, R.L. Viana, S.R. Lopes, Physica A 322, 118 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. A.R. Sonawane, Phys. Rev. E 81, 056206 (2010)

    Article  ADS  Google Scholar 

  10. W. Kinzel, A. Englert, G. Reents, M. Zigzag, I. Kanter, Phys. Rev. E 79, 056207 (2009)

    Article  ADS  Google Scholar 

  11. P.G. Lind, A. Nunes, J.A.C. Gallas, Physica A 371, 100103 (2006)

    Article  Google Scholar 

  12. B. Schmitzer, W. Kinzel, I. Kanter, Phys. Rev. E 80, 047203 (2009)

    Article  ADS  Google Scholar 

  13. M. Ponce, C. Masoller, A.C. Marti, Eur. Phys. J. B 67, 83 (2009)

    Article  ADS  Google Scholar 

  14. Q.Y. Wang, Z.S. Duan, M. Perc, G.R. Chen, Europhys. Lett. 83, 50008 (2008)

    Article  ADS  Google Scholar 

  15. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Phys. Rev. E 80, 026206 (2009)

    Article  ADS  Google Scholar 

  16. G. Schmidt, G. Zamora-Lopez, J. Kurths, Int. J. Bifur. Chaos 20, 859 (2010)

    Article  MathSciNet  Google Scholar 

  17. F.M. Atay, Phys. Rev. Lett. 91, 094101 (2003)

    Article  ADS  Google Scholar 

  18. F.M. Atay, S. Jalan, J. Jost, Phys. Lett. A 375, 130 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.J. Feigenbaum, J. Statist. Phys. 19, 25 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. P. Coullet, C. Tresser, J. Phys. Colloque C 539, C5 (1978)

    Google Scholar 

  21. C. Tresser, P. Coullet, C. R. Acad. Sci. Paris 287A, 577 (1978)

    MathSciNet  Google Scholar 

  22. M.J. Feigenbaum, J. Statist. Phys. 21, 669 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. F.M. Atay, J. Jost, A. Wende, Phys. Rev. Lett. 92, 144101 (2004)

    Article  ADS  Google Scholar 

  24. C. Masoller, A.C. Marti, Phys. Rev. Lett. 94, 134102 (2005)

    Article  ADS  Google Scholar 

  25. F.M. Atay, Ö. Karabacak, SIAM J. Appl. Dyn. Syst. 5, 508 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. F.M. Atay, Discrete Contin. Dyn. Syst. S 1, 197 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. T. Omi, S. Shinomoto, Phys. Rev. E 77 046214 (2008)

    Article  ADS  Google Scholar 

  28. S. Jalan, J. Jost, F.M. Atay, Chaos 16, 033124 (2006)

    Article  ADS  Google Scholar 

  29. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Article  ADS  Google Scholar 

  30. A.C. Marti, C. Masoller, Phys. Rev. E 67, 056219 (2003)

    Article  ADS  Google Scholar 

  31. C. Masoller, A.C. Marti, D.H. Zanette, Physica A 325, 186 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. P. Erdös, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Masoller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoller, C., Atay, F. Complex transitions to synchronization in delay-coupled networks of logistic maps. Eur. Phys. J. D 62, 119–126 (2011). https://doi.org/10.1140/epjd/e2011-10370-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10370-7

Keywords

Navigation