Skip to main content
Log in

Sheath and electron density dynamics in the normal and self-pulsing regime of a micro hollow cathode discharge in argon gas

  • Topical issue: Hybrid Quantum Systems – New Perspectives on Quantum State Control
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A microplasma is generated in the microhole (400 μm diameter) of a molybdenum-alumina-molybdenum sandwich (MHCD type) at medium pressure (30–200 Torr) in pure argon. Imaging and emission spectroscopy have been used to study the sheath and electron density dynamics during the stationary normal regime and the self-pulsing regime. Firstly, the evolution of the microdischarge structure is studied by recording the emission intensity of the Ar (5p[3/2]1–4s[3/2]\(_{1})\) line at 427.217 nm, and Ar+ (4p′ 2P3/2–4s′ 2D\(_{5/2})\) line at 427.752 nm. The maximum of the Ar+ line is located in the vicinity of the sheath-plasma edge. In both regimes, the experimental observations are consistent with the position of the sheath edge calculated with an ionizing sheath model. Secondly, the electron density is recorded by monitoring the Stark broadening of the H\(_\beta\)-line. In the self-pulsing regime at 150 Torr, the electron density reaches its maximum value of 4 × 1015 cm-3, a few tens of ns later than the discharge current maximum. The electron density then decays with a characteristic decay time of about 2 μs, while the discharge current vanishes twice faster. The electron density in the steady-state regime is two orders of magnitude lower, at about 6–8 × 1013 cm-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H. Schoenbach, R. Verhappen, T. Tessnow, F.E. Peterkin, W.W. Byszewski, Appl. Phys. Lett. 68, 13 (1996)

    Article  ADS  Google Scholar 

  2. F. Adler, Davliatchine, E. Kindel, J. Phys. D 35, 2291 (2002)

    Article  ADS  Google Scholar 

  3. M. Kushner, J. Phys. D 38, 1633 (2005)

    Article  ADS  Google Scholar 

  4. J.P. Boeuf, L.C. Pitchford, K.H. Schoenbach, Appl. Phys. Lett. 86, 071501 (2005)

    Article  ADS  Google Scholar 

  5. G.J. Kim, F. Iza, J.K. Lee, J. Phys. D 39, 4386 (2006)

    Article  ADS  Google Scholar 

  6. S. Belostotskiy, R. Khandelwal, Q. Wang, V.M. Donnelly, D.J. Economou, N. Sadeghi, Appl. Phys. Lett. 92, 221507 (2008)

    Article  ADS  Google Scholar 

  7. S. Belostotskiy, V.M. Donnelly, D.J. Economou, N. Sadeghi, IEEE Trans. Plasma Sci. 37, 852 (2009)

    Article  ADS  Google Scholar 

  8. T. Deconinck, L.L Raja, Plasma Process. Polym. 6, 335 (2009)

    Article  Google Scholar 

  9. E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma Source. Sci. Technol. 16, 383 (2002)

    Article  ADS  Google Scholar 

  10. R. Rahul, O. Stan, A. Rahman, E. Littlefield, K. Hoshimiya, A.P. Yalin, A. Sharla, A. Pruden, C.A. Moore, Z. Yu, G.J. Collins, J. Phys. D 38, 1750 (2005)

    Article  ADS  Google Scholar 

  11. M. Moselhy, W. Shi, R.H. Stark, K.H. Schoenbach, IEEE Trans. Plasma Sci. 30, 198 (2002)

    Article  ADS  Google Scholar 

  12. P. Mohan Sankaran, P. Giapis Konstantinos, J. Appl. Phys. 92, 2406 (2002)

    Article  Google Scholar 

  13. A. Rousseau, X. Aubert, J. Phys. D 39, 1619 (2006)

    Article  ADS  Google Scholar 

  14. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech, A. Rousseau, Plasma Source. Sci. Technol. 16, 23 (2007)

    Article  ADS  Google Scholar 

  15. C. Lazzaroni, P. Chabert, A. Rousseau, N. Sadeghi, J. Phys. D 43, 124008 (2010)

    Article  ADS  Google Scholar 

  16. W.L. Wiese, G.A. Martin, A Physicist’s Desk Reference, edited by H.L. Anderson (AIP, 1989), p. 101

  17. C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Source. Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  18. M. Ivkovic, S. Jovicevic, N. Konjevic, Spectochem. Acta B 59, 591 (2004)

    Article  ADS  Google Scholar 

  19. M.A. Gigosos, M.A. Gonzalez, V. Cardenoso, Spectochem. Acta B 58, 1489 (2003)

    Article  ADS  Google Scholar 

  20. M.A. Lieberman, A.J. Lichtenberg, Principle of Plasma Discharges and Materials Processing (2005)

  21. G. Xia, N. Sadeghi, 29th ICPIG (2009), Topic 06

  22. M. Miclea, K. Kunze, U. Heitmann, S. Florek, J. Franzke, K. Niemax, J. Phys. D 38, 1709 (2005)

    Article  ADS  Google Scholar 

  23. M. Moselhy, I. Petzenhauser, K. Frank, K.H. Schoenbach, J. Phys. D 36, 2922 (2003)

    Article  ADS  Google Scholar 

  24. C. Penache, M. Miclea, A. Bräuning-Demian, O. Hohn, S. Schössler, T. Jahnke, K. Niemax, H. Schmidt-Böcking, Plasma Source. Sci. Technol. 11, 476 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lazzaroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzaroni, C., Chabert, P., Rousseau, A. et al. Sheath and electron density dynamics in the normal and self-pulsing regime of a micro hollow cathode discharge in argon gas. Eur. Phys. J. D 60, 555–563 (2010). https://doi.org/10.1140/epjd/e2010-00259-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00259-4

Keywords

Navigation